Answer:

Explanation:
The density of an object is given by

where
m is the mass of the object
V is its volume
In this problem,
m = 42 kg
V = 22 m^3
Substituting into the equation, we find the object's density:

Answer:
The frequency of the oscillation is 2.45 Hz.
Explanation:
Given;
mass of the spring, m = 0.5 kg
total mechanical energy of the spring, E = 12 J
Determine the spring constant, k as follows;
E = ¹/₂kA²
kA² = 2E
k = (2E) / (A²)
k = (2 x 12) / (0.45²)
k = 118.519 N/m
Determine the angular frequency, ω;

Determine the frequency of the oscillation;
ω = 2πf
f = (ω) / (2π)
f = (15.396) / (2π)
f = 2.45 Hz
Therefore, the frequency of the oscillation is 2.45 Hz.
A. Illustrates how a theory becomes a law
Answer:
a) 0.036 J b) 0.036J c) 0.036 d) 1.9m/s e) 0.18 m
Explanation:
Mass of the dart = 0.02kg, the spring was compressed to 6cm
Work needed to compress the spring = 1/2*k*x ^2 where k is the force constant of the spring in N/m, x is the distance it was compressed in m
Work needed to compress the spring = 0.5 * 20* 0.06^2 since 6cm = 6 / 100 = 0.06 m
Work needed to compress the spring = 0.036J
b) the total energy stored in the spring = the work done to compress the spring = 0.036J
c) kinetic energy of the dart as it leaves the the spring = elastic potential energy stored in the spring = the work done in compressing the = 0.036J using the law of conservation of energy; energy is neither created nor destroyed but transformed from one form to another.
d) 1/2mv^2 = 0.036
mv^2 = 0.036*2
v^2 = 0.036*2 / 0.02 = 3.6
v = √3.6 = 1.897 approx 1.9m/s
e) kinetic energy of the dart = work done against gravity to get the body to height h
Work done against gravity = potential energy conserved at height = -mgh g is negative because the motion is upward while gravity acts downward
0.036 = 0.02 * 9.81 * h
0.036 / ( 0.02*9.81) = h
h = 0.18 m
Answer:
The same current flows through each resistor in series. Individual resistors in series do not get the total source voltage, but divide it. The total resistance in a series circuit is equal to the sum of the individual resistances: RN(series)=R1+R2+R3+…