B. Mentally represent their environment
<span>The inner planets (in order of distance from the sun, closest to furthest) are Mercury, Venus, Earth and Mars. After an asteroid belt comes the outer planets, Jupiter, Saturn, Uranus and Neptune. The interesting thing is, in some other planetary systems discovered, the gas giants are actually quite close to the sun</span>
Answer:
C a fast-moving cold front moved through the area.
Explanation:
This is because, since there is a there is a thunderstorm and high winds in the area, this can only be caused by a fast moving front. Also there is a temperature drop, this can only be caused by the fast moving cold front since a cold front has a low temperature.
Thus, for the area to experience thunderstorms with high winds and a drop in temperature, <u>a fast-moving cold front moved through the area.</u>
-- Accelerating at the rate of 8 m/s², Andy's speed
after 30 seconds is
(8 m/s²) x (30.0 s) = 240 m/s .
-- His average speed during that time is
(1/2) (0 + 240 m/s) = 120 m/s .
-- In 30 sec at an average speed of 120 m/s,
Andy will travel a distance of
(120 m/s) x (30 sec) = 3,600 m
= 3.6 km .
"But how ? ! ?", you ask.
How in the world can Andy leave a stop light and then
cover 3.6 km = 2.24 miles in the next 30 seconds ?
The answer is: His acceleration of 8 m/s², or about 0.82 G
is what does it for him.
At that rate of acceleration ...
-- Andy achieves "Zero to 60 mph" in 3.35 seconds,
and then he keeps accelerating.
-- He hits 100 mph in 5.59 seconds after jumping the light ...
and then he keeps accelerating.
-- He hits 200 mph in 11.2 seconds after jumping the light ...
and then he keeps accelerating.
-- After accelerating at 8 m/s² for 30 seconds, Andy and his
car are moving at 537 miles per hour !
We really don't know whether he keeps accelerating,
but we kind of doubt it.
A couple of observations in conclusion:
-- We can't actually calculate his displacement with the information given.
Displacement is the distance and direction between the starting- and
ending-points, and we're not told whether Andy maintains a straight line
during this tense period, or is all over the road, adding great distance
but not a lot of displacement.
-- It's also likely that sometime during this performance, he is pulled
over to the side by an alert cop in a traffic-control helicopter, and
never actually succeeds in accomplishing the given description.
Answer:
2 m/s
Explanation:
From the conservation of momentum, the initial momentum of the system must be equal to the final momentum of the system.
Let the 10.00 kg mass be
and the 12.0 kg mass be
. When they collide and stick, they have a combined mass of
.
Momentum is given by
. Set up the following equation:
, where
is the desired final velocity of the masses.
Call the right direction positive. To indicate the 12.0 kg object is travelling left, its velocity should be substitute as -8.00 m/s.
Solving yields:
