<span>f(x) = 5.05*sin(x*pi/12) + 5.15
First, you need to determine the period of the function. The period will be the time interval between identical points on the sinusoidal function. For this problem, the tide is rising and at 5.15 at midnight for two consecutive days. So the period is 24 hours. Over that 24 hour period, we want the parameter passed to sine to range from 0 to 2*pi. So the scale factor for x will be 2*pi/24 = pi/12 which is approximately 0.261799388. The next thing to note is the magnitude of the wave. That will simply be the difference between the maximum and minimum values. So 10.2 ft - 0.1 ft = 10.1 ft. And since the value of sine ranges from -1 to 1, we need to divide that magnitude by 2, so 10.1 ft / 2 = 5.05 ft.
So our function at this point looks like
f(x) = 5.05*sin(x*pi/12)
But the above function ranges in value from -5.05 to 5.05. So we need to add a bias to it in order to make the low value equal to 0.1. So 0.1 = X - 5.05, 0.1 + 5.05 = X, 5.15 = X. So our function now looks like:
f(x) = 5.05*sin(x*pi/12) + 5.15
The final thing that might have been needed would have been a phase correction. With this problem, we don't need a phase correction since at X = 0 (midnight), the value of X*pi/12 = 0, and the sine of 0 is 0, so the value of the equation is 5.15 which matches the given value of 5.15. But if the problem had been slightly different and the height of the tide at midnight has been something like 7 feet, then we would have had to calculate a phase shift value for the function and add that constant to the parameter being passed into sine, making the function look like:
f(x) = 5.05*sin(x*pi/12 + C) + 5.15
where
C = Phase correction offset.
But we don't need it for this problem, so the answer is:
f(x) = 5.05*sin(x*pi/12) + 5.15
Note: The above solution assumes that angles are being measured in radians. If you're using degrees, then instead of multiplying x by 2*pi/24 = pi/12, you need to multiply by 360/24 = 15 instead, giving f(x) = 5.05*sin(x*15) + 5.15</span>
Answer:
the magnitude of the velocity of one particle relative to the other is 0.9988c
Explanation:
Given the data in the question;
Velocities of the two particles = 0.9520c
Using Lorentz transformation
Let relative velocity be W, so
v
= ( u + v ) / ( 1 + ( uv / c²) )
since each particle travels with the same speed,
u = v
so
v
= ( u + u ) / ( 1 + ( u×u / c²) )
v
= 2(0.9520c) / ( 1 + ( 0.9520c )² / c²) )
we substitute
v
= 1.904c / ( 1 + ( (0.906304 × c² ) / c²) )
v
= 1.904c / ( 1 + 0.906304 )
v
= 1.904c / 1.906304
v
= 0.9988c
Therefore, the magnitude of the velocity of one particle relative to the other is 0.9988c
Magnetism is the product of a moving charged particle. We can have electricity without magnetism but we can not have magnetism without electricity.An electro magnet is made so that we have a soft metal core and electricity around it. A bar magnet is a normal magnet in bar shape with permanent magnetism.
Answer:
The electric field will be zero at x = ± ∞.
Explanation:
Suppose, A -2.0 nC charge and a +2.0 nC charge are located on the x-axis at x = -1.0 cm and x = +1.0 cm respectively.
We know that,
The electric field is

The electric field vector due to charge one

The electric field vector due to charge second

We need to calculate the electric field
Using formula of net electric field


Put the value into the formula




Put the value into the formula


If x = ∞, then the equation is be satisfied.
Hence, The electric field will be zero at x = ± ∞.