#82
here we know that
acceleration = 2 m/s/s
time = 5 s
initial speed = 4 m/s
now we can use kinematics to find the final speed



So correct answer will be option D)
#83
here we know that
acceleration = 3 m/s/s
time = 4 s
initial speed = 5 m/s
now we can use kinematics to find the final speed



So correct answer will be option C)
#84
here we know that
acceleration = 7 m/s/s
time = 3 s
initial speed = 8 m/s
now we can use kinematics to find the final speed



So correct answer will be option C)
Question:
A high ____will have a short wavelength
Answer:
That means that waves with a high frequency have a short wavelength, while waves with a low frequency have a longer wavelength. Light waves have very, very short wavelengths
Explanation:
Hope it help
Answer:
The ratio of the resistances of second coil to the first coil is the ratio of square of radius of the first coil to the square of radius of second coil.
And
The ratio of the resistances of fourth coil to the third coil is the ratio of square of radius of the third coil to the square of radius of fourth coil.
Explanation:
The resistance of the coil is directly proportional to the length of the coil and inversely proportional to the area of coil and hence inversely proportional to the square of radius of the coil.
So, the ratio of the resistances of second coil to the first coil is the ratio of square of radius of the first coil to the square of radius of second coil.
And
The ratio of the resistances of fourth coil to the third coil is the ratio of square of radius of the third coil to the square of radius of fourth coil.
Answer:
can't tell if this is question, it is not written correctly
Explanation:
Electrical conductivity is the measure of a material's ability to allow the transport of an electric charge. Its SI is the siemens per meter, (A2s3m−3kg−1) (named after Werner von Siemens) or, more simply, Sm−1. It is the ratio of the current density to the electric field strength.