1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Blababa [14]
2 years ago
12

Question 12

Physics
1 answer:
dedylja [7]2 years ago
4 0

Answer:

A. the same speed as the first trip

Explanation:

there's no friction

pls mark as brainliest

You might be interested in
In one scene in the movie The Godfather II, a solid gold phone is passed around a large table for everyone to see. Suppose the v
dangina [55]
Volume of gold in the phone = 10 cm^3
                                              = 0.<span>00001 m^3 </span>
Density of gold = 19300 kg/m^3
1 kg mass = 2.2 pounds
Mass of 10 cm^3 of gold = 0<span>.00001 m^3 * (19300 kg/m^3)
                                        = 0.193 kg 
So
0.193 kg = 0.193 * 2.2 pounds
               = 0.43 pounds
I think there is something wrong with the options given in the question.</span>
7 0
3 years ago
In 1-2 sentences describe how your nose cleans the air you inhale.
svp [43]

Answer: Your nose inhales O2 and goes through these little nose hairs to keep stuff that doesn't belong in your airway, it goes through your nose into your lungs taking in O2 for your blood. The other substances that you have inhaled get absorbed elsewhere and it is converted into CO2 which is what you exhale.

Explanation:

3 0
3 years ago
A stone is thrown vertically upwards with an initial velocity of 20m/sec. Find the maximum height ot reaches and the time taken
MAXImum [283]

Answer:

The height reached is 20m, The time taken to reach 20m is 2 seconds

Explanation:

Observing the equations of motion we can see that the following equation will be most helpful for this question.

v^{2} = u^{2} + 2as

We are given initial velocity, u

We know that the stone will stop at its maximum height, so final velocity, v

Acceleration, a

And we are looking for the displacement (height reached), s

Substitute the values we are given into the equation

0^{2} = 20^{2} + 2(10)s

Rearrange for s

0^{2} -20^{2} =20s

-400=20s

\frac{-400}{20} =s

s = -20 (The negative is just showing direction, it can be ignored for now)

The height reached is 20m

Use a different equation to find the time taken

s = vt - \frac{1}{2} at^{2}

Substitute in the values we have

-20=(0)t - \frac{1}{2} (10)t^{2}

Rearrange for t

-20 =0 -5 t^{2}

\frac{-20}{-5} =t^{2}

4 = t^{2}

t = 2s

The time taken to reach 20m is 2 seconds

4 0
3 years ago
g The potential energy of a pair of hydrogen atoms separated by a large distance x is given by U(x)=−C6/x6, where C6 is a positi
Arisa [49]

Answer:

F_x = -\frac{6 C_6}{2^7}

Attractive

Explanation:

Data provided in the question

The potential energy of a pair of hydrogen atoms given by \frac{C_6}{X_6}

Based on the given information, the force that one atom exerts on the other is

Potential energy μ = \frac{C_6}{X_6}

Force exerted by one atom upon another

F_x = \frac{\partial U}{\partial X} = \frac{\partial}{\partial X}  (-\frac{C_6}{X^6})

or

F_x = \frac{\partial}{\partial X}  (\frac{C_6}{X^6})

or

F_x = -\frac{6 C_6}{2^7}

As we can see that the C_6 comes in positive and constant which represents that the force is negative that means the force is attractive in nature

5 0
3 years ago
Light with a wavelength of 400 nm strikes the surface of cesium in a photocell, and the maximum kinetic energy of the electrons
Firdavs [7]

Answer:

The longest wavelength of light that is capable of ejecting electrons from that metal is 1292 nm.

Explanation:

Given that,

Wavelength = 400 nm

Energy E=1.54\times10^{-19}\ J

We need to calculate the longest wavelength of light that is capable of ejecting electrons from that metal

Using formula of energy

E = \dfrac{hc}{\lambda}

\lambda=\dfrac{hc}{E}

Put the value into the formula

\lambda=\dfrac{6.63\times10^{-34}\times3\times10^{8}}{1.54\times10^{-19}}

\lambda=1292\times10^{-9}\ m

\lambda=1292\ nm

Hence, The longest wavelength of light that is capable of ejecting electrons from that metal is 1292 nm.

8 0
3 years ago
Other questions:
  • What is the capital of prince edward island
    7·1 answer
  •  True or False? Anything that moves up and down or back and forth in a rhythmic way is vibrating.
    15·1 answer
  • What three tests must all theories pass to be considered a proven theory?
    8·1 answer
  • Consider the following geometric solids.
    15·2 answers
  • Which statement is an example of the law of conservation of energy
    7·1 answer
  • Two waves with amplitudes of 52 units and 98 units come together. Their amplitude, which is measured at a specific point and tim
    11·2 answers
  • The magnetic field of an electromagnetic wave in a vacuum is Bz =(2.4μT)sin((1.05×107)x−ωt), where x is in m and t is in s. You
    12·1 answer
  • A frog falls from its rainforest tree. If we ignore wind resistance, (a) how much time does it take the frog to fall a distance
    15·1 answer
  • A group of students gather for some fun during their summer break from school. Kendall and Jacoby have a water balloon fight dur
    10·1 answer
  • Which of the following is a chemical change?
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!