Answer:
1= 1
2=11
3=7
Step-by-step explanation:
subtract 6 from the input so
7-6=1
11-6=5 so input 11
13-6=7
Answer:
The 5-hour decay factor for the number of mg of caffeine in Ben's body is of 0.1469.
Step-by-step explanation:
After consuming the energy drink, the amount of caffeine in Ben's body decreases exponentially.
This means that the amount of caffeine after t hours is given by:

In which A(0) is the initial amount and k is the decay rate, as a decimal.
The 10-hour decay factor for the number of mg of caffeine in Ben's body is 0.2722.
1 - 0.2722 = 0.7278, thus,
. We use this to find k.







Then

What is the 5-hour growth/decay factor for the number of mg of caffeine in Ben's body?
We have to find find A(5), as a function of A(0). So


The decay factor is:
1 - 0.8531 = 0.1469
The 5-hour decay factor for the number of mg of caffeine in Ben's body is of 0.1469.
Answer:
11111111111111111
Step-by-step explanation:
2222222222
Total is $18.72 so the shopper would need to buy 6 of the 8 packs!!!
Answer:
0.0062
Step-by-step explanation:
Find the standard error.
σ = 20 / √100
σ = 2
Find the z-score.
z = (x − μ) / σ
z = (70 − 65) / 2
z = 2.5
Find the probability.
P(Z > 2.5) = 1 − 0.9938
P(Z > 2.5) = 0.0062