Answer: participant observation, interviews and surveys. All of these ethnographic methods can be very valuable in gaining a deeper understanding of a design problem.
Explanation:
Answer:
hope this helps
Assume that you hold a well-diversified portfolio that has an expected return of 11.0% and a beta of 1.20. You are in the process of buying 1,000 shares of Alpha Corp at $10 a share and adding it to your portfolio. Alpha has an expected return of 21.5% and a beta of 1.70. The total value of your current portfolio is $90,000. What will the expected return and beta on the portfolio be after the purchase of the Alpha stock? Do not round your intermediate calculations.
Old portfolio return
11.0%
Old portfolio beta
1.20
New stock return
21.5%
New stock beta
1.70
% of portfolio in new stock = $ in New / ($ in old + $ in new) = $10,000/$100,000=
10%
New expected portfolio return = rp = 0.1 × 21.5% + 0.9 × 11% =
12.05%
New expected portfolio beta = bp = 0.1 × 1.70 + 0.9 × 1.20 =
1.25
Explanation:
Answer:
The answer is: The option to buy shares of stock if its price is expected to increase.
Explanation:
A <em>"real option"</em> in management is: a choice managers can take concerning business investment opportunities. <em>Real options</em> usually involve tangible assets (machinery, buildings, inventory, land, etc.) but not financial instruments or stocks.
So the buying or selling of stocks aren´t considered <em>real options</em> in business management.
Answer:
quantitative measurements of the nation's economic activity from last quarter
Answer:
If output doubles when inputs double, the production function will be characterized by a <u>constant returns to scale</u>.
Explanation:
In economics, returns to scale refers to a long run situation that reveals to the proportionate change in output when capital and labor inputs become variable or change.
The three possible types of returns to scale are as follows:
1. Increasing returns to scale: This occurs when the proportionate change in output is greater than the proportionate change in capital and labor inputs.
2. Decreasing returns to scale: This occurs when the proportionate change in output is less than the proportionate change in capital and labor inputs.
3. Constant returns to scale: This occurs when the proportionate change in output is the same as the proportionate change in capital and labor inputs.
Based on the above explanation therefore, if output doubles when inputs double, the production function will be characterized by a <u>constant returns to scale</u>. This is because the the proportionate change (double) in output is the sames as the proportionate change (double) in inputs.