Answer:
The diameter of the oil molecule is
.
Explanation:
Mass of the oil drop = 
Density of the oil drop = 
Volume of the oil drop: v


Thickness of the oil drop is 1 molecule thick.So, let the thickness of the drop or diameter of the molecule be x.
Radius of the oil drop on the water surface,r = 41.8 cm = 0.418 m
1 cm = 0.01 m
Surface of the sphere is given as: a = 

Volume of the oil drop = v = Area × thickness


The thickness of the oil drop is
and so is the diameter of the molecule.
The answer to your question:
1.88 moles Na is 43.22 grams
Answer:
The first period is the shortest in the long form of periodic table
Explanation:
the long form or the modern periodic table is based on ht modern periodic law. it has 7 periods and 18 groups. this periodic table is widely used by people all over the world. the chemical and physical properties of the elements can be easily identified due to their classification into groups and periods or their position in the periodic table. the first period is the shortest in the long form of periodic table. there are two elements present, they are- hydrogen(H) and helium (He)
The are made from star stuffs...
Galaxies are composed of stars, dust, and dark matter, all held together by gravity. Below we discuss galaxy formation, galactic collisions and other facts about these so-called “island universes.” The Milky Way Galaxy is organized into spiral arms of giant stars that illuminate interstellar gas and dust.
Hope that helps........ (◕‿◕✿)
Answer:
the conversion factor is f= 6 mol of glucose/ mol of CO2
Explanation:
First we need to balance the equation:
C6H12O6(s) + O2(g) → CO2(g) + H2O(l) (unbalanced)
C6H12O6(s) + 6O2(g) → 6CO2(g) + 6H2O(l) (balanced)
the conversion factor that allows to calculate the number of moles of CO2 based on moles of glucose is:
f = stoichiometric coefficient of CO2 in balanced reaction / stoichiometric coefficient of glucose in balanced reaction
f = 6 moles of CO2 / 1 mol of glucose = 6 mol of glucose/ mol of CO2
f = 6 mol of CO2/ mol of glucose
for example, for 2 moles of glucose the number of moles of CO2 produced are
n CO2 = f * n gluc = 6 moles of CO2/mol of glucose * 2 moles of glucose= 12 moles of CO2