Answer: HCI + KOH → KCI + H20
Explanation:
HCI(aq) + KOH(aq) → KCI(aq) + H20(l)
Acid + base → Salt + Water.
The above is a neutralization reaction in which an acid, aqeous HCl reacts completely with an appropriate amount of a base, aqueous KOH to produce salt, aqueous KCl and water, liquid H2O only.
This is a neutralization reaction since, the hydrogen ion, H+, from the HCl is neutralized by the hydroxide ion, OH-, from the KOH to form the water molecule, H2O and salt, KCl only.
The molarity of solution made by dissolving 15.20g of i2 in 1.33 mol of diethyl ether (CH3CH2)2O is =0.6M
calculation
molarity =moles of solute/ Kg of the solvent
mole of the solute (i2) = mass /molar mass
the molar mass of i2 = 126.9 x2 = 253.8 g/mol
moles is therefore= 15.2 g/253.8 g/mol = 0.06 moles
calculate the Kg of solvent (CH3CH2)2O
mass = moles x molar mass
molar mass of (CH3CH2)2O= 74 g/mol
mass is therefore = 1.33 moles x 74 g/mol = 98.42 grams
in Kg = 98.42 /1000 =0.09842 Kg
molarity is therefore = 0.06/0.09842 = 0.6 M
<u>Answer:</u> The mass of calcium chloride present in given amount of solution is 87.5 g
<u>Explanation:</u>
We are given:
Mass of solution = 277.8 grams
Also, 31.5 % (m/m) of calcium chloride in water. This means that 31.5 g of calcium chloride is present in 100 g of solution.
To calculate the mass of calcium chloride in the given amount of solution, we use unitary method:
in 100 g of solution, the mass of calcium chloride present is 31.5 g
So, 277.8 g of solution, the mass of calcium chloride present is
Hence, the mass of calcium chloride present in given amount of solution is 87.5 g
Answer:
Explanation:
In general, an increase in pressure (decrease in volume) favors the net reaction that decreases the total number of moles of gases, and a decrease in pressure (increase in volume) favors the net reaction that increases the total number of moles of gases.
Δn= b - a
Δn= moles of gaseous products - moles of gaseous reactants
Therefore, <u>after the increase in volume</u>:
- If Δn= −1 ⇒ there are more moles of gaseous reactants than gaseous products. The equilibrium will be shifted towards the products, that is, from left to right, and K>Q.
- If Δn= 0 ⇒ there is the same amount of gaseous moles, both in products and reactants. The system is at equilibrium and K=Q.
- Δn= +1 ⇒ there are more moles of gaseous products than gaseous reactants. The equilibrium will be shifted towards the reactants, that is, from right to left, and K<Q.