Answer:
the wind carries abrasive materials
Explanation:
such as sand and salt over time theses small particles slowly strip way at the land form sculpting it by eroding the softer layers first
Answer:
Amorphous solids are composed of atoms or molecules that are in no particular order. Each particle is in a particular spot, but the particles are in no organized pattern. Examples include rubber and wax. Crystalline solids have a very orderly, three-dimensional arrangement of atoms or molecules
Explanation:
The true statement about the wave is that, the wave has traveled 97. 2 cm in 1 second.
In Physics, we define a wave as a disturbance along a medium that transfers energy. The wavelength of a wave is the distance covered by the wave while the frequency of the wave is the number of cycles of the wave completed per second.
The period of the wave is the inverse of the frequency of the wave. It is defined as the time taken for the wave to complete a cycle and it is measured in seconds.
The wave formula is given as;
v = λf
v = velocity of the wave (distance traveled by the wave in one second)
λ = wavelength of the wave
f = frequency of the wave
So;
λ = 32.4 cm
f = 3 hertz
v = 32.4 cm × 3 hertz
v = 97. 2 cms-1
Hence, the true statement about the wave is that, the wave has traveled 97. 2 cm in 1 second.
Learn more: brainly.com/question/14588679
Answer:
Usually the coefficient of friction remains unchanged
Explanation:
The coefficient of friction should in the majority of cases, remain constant no matter what your normal force is. When you apply a greater normal force, the frictional force increases, and your coefficient of friction stays the same. Here's another way to think about it: because the force of friction is equal to the normal force times the coefficient of friction, friction is increased when normal force is increased.
Plus, the coefficient of friction is a property of the materials being "rubbed", and this property usually does not depend on the normal force.
The stronger they will be