1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Karolina [17]
2 years ago
12

Marco is conducting an experiment. He knows the wave that he is working with has a wavelength of 32. 4 cm. If he measures the fr

equency as 3 hertz, which statement about the wave is accurate? The wave has traveled 32. 4 cm in 3 seconds. The wave has traveled 32. 4 cm in 9 seconds. The wave has traveled 97. 2 cm in 3 seconds. The wave has traveled 97. 2 cm in 1 second.
Physics
1 answer:
sineoko [7]2 years ago
7 0

The true statement about the wave is that, the wave has traveled 97. 2 cm in 1 second.

In Physics, we define a wave as a disturbance along a medium that transfers energy. The wavelength of a wave is the distance covered by the wave while the frequency of the wave is the number of cycles of the wave completed per second.

The period of the wave is the inverse of the frequency of the wave. It is defined as the time taken for the wave to complete a cycle and it is measured in seconds.

The wave formula is given as;

v = λf

v = velocity of the wave (distance traveled by the wave in one second)

λ = wavelength of the wave

f = frequency of the wave

So;

λ = 32.4 cm

f =  3 hertz

v = 32.4 cm × 3 hertz

v = 97. 2 cms-1

Hence, the true statement about the wave is that, the wave has traveled 97. 2 cm in 1 second.

Learn more: brainly.com/question/14588679

You might be interested in
An upward force act on a proton as it moves with a speed of 2.0 x 10^5 meters/seconds through a magnetic field of 8.5 x 10^2
Gekata [30.6K]

Force on a moving charge is given by formula

\vec F = q(\vec v \times \vec B)

here we know that this force will be maximum when velocity is perpendicular to magnetic field

\vec F = qvB

here we know that

v = 2.0 \times 10^5 m/s

q = 1.6 \times 10^{-19} C

B = 8.5 \times 10^2 T

now we have

F = (1.6 \times 10^{-19})(2 \times 10^5)(8.5 \times 10^2)

F = 2.72 \times 10^{-11} N

7 0
3 years ago
Which of the following describes the principle of conservation of charge?
grigory [225]

Answer: The statement "The charge cannot be created or destroyed describes the principle of the conservation of charge".

Explanation:

According to the conservation of charge, the charge can neither be created nor destroyed. It can be transferred from one system to another.

In an isolated system, the total electric charge remains constant. The net quantity of electric  charge is always conserved in the universe.

Therefore, "the charge cannot be created or destroyed" describes the principle of the conservation of charge.

7 0
3 years ago
Can someone help me please ​
Svetllana [295]

Answer:

B.) Visit a healthcare professional

Explanation:

Their judgement is much better than a friend's or your own.

6 0
2 years ago
Drag each label to the correct location. Sort the sentences based on whether they describe the properties of a heterogeneous or
Lisa [10]

Answer:

ijpferiukjlwbl aojh oljn,

Explanation:

5 0
3 years ago
A 4.4 nC charge exerts a repulsive force of 36 mN on a second charge which is located
zhenek [66]

The magnitude and sign of the second charge will be + 8.6241×10⁻¹⁹ C. The principal of the Columb's law is used in the given problem.

<h3>What is Columb's law?</h3>

The force of attraction between two charges, according to Coulomb's law, is directly proportional to the product of the charges and inversely proportional to the square of the distance between them.

Charges that are similar repel each other, whereas charges that are diametrically opposed attract each other.

They will repel, moving in opposite directions at the same speed. Because the magnitude and nature of the charge are the same.

The given data in the problem is;

q₁  is the charge 1 = 4.4 nC = 4.4 ×10⁻⁹ C

F is the repulsive force = 36 mN =36 ×10⁶ N

d is the distance = 0.70 m

The Coulomb force is found as;

\rm F = \frac{Kq_1q_2}{r^2}\\\\\ \rm 36\times 10^6 = \frac{9 \times 10^9 }{(0.7)^2} \times 4.4 \times 10^{-9} \times q_2\\\\\ q_2 = 8.6241  \times 10^{-19 } \ C

Hence, the magnitude and sign of the second charge will be + 8.6241×10⁻¹⁹ C.

To learn more about Coulomb's law, refer to the link;

brainly.com/question/1616890

#SPJ2

6 0
2 years ago
Other questions:
  • Which of the following is not used to measure wind?
    13·2 answers
  • What type of radiation does nuclear fission produce?
    6·2 answers
  • Assuming a constant force if the mass of an object increases the acceleration of the object will
    10·1 answer
  • A child bounces a 51 g superball on the sidewalk. The velocity change of the super bowl is from 22 m/s downward to 14 m/s upward
    7·1 answer
  • Earths gravitational pull just got 3 times stronger what happens to your weight?
    10·2 answers
  • Does a rolling ball on a level floor have PE or KE? Explain.
    15·1 answer
  • By comparing fossils of a species from long ago to those of today, we can conclude that *
    5·1 answer
  • As wavelength decreases, frequency and energy _________________;
    10·1 answer
  • (2) Put 5kg mass at left side (at 2m). This is fixed throughout the experiment! (3) Try to balance by putting 5kg mass at the ri
    5·1 answer
  • What do you mean by potential energy of an object is 60J​
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!