To solve the problem it is necessary to apply the equations related to the Poiseuilles laminar flow law, with which the stationary laminar flow ΦV of an incompressible and uniformly viscous liquid (also called Newtonian fluid) can be determined through a cylindrical tube of constant circular section. Mathematically this can be expressed:

Where:
are the viscosities of the concrete before and after the increase
l = Length of the vessel
= Radio of the vessel before and after the increase
= Change in the pressure
The rates of flow before and after he increase
Our values are given as:
10 times her resting rate
95% of its normal value
Increase of 50%
Plugging known information to get







Therefore the factor of average radio of her blood vessels increased is 1.589 the initial factor after the increase.
I think it would be d because development in nations needs more population
Hey!
NOTE-:
u= initial velocity
v= final velocity
g= acceleration due to gravity
t= time
u= 0
v= 49 m/s
t=?
g= 9.8 m/s^2
Using first equation of motion -
v-u=at
49-0= 9.8×t
49 = 9.8t
49/9.8= t
t= 5 second
Hope it helps...!!!
Answer:
Yes it will move and a= 4.19m/s^2
Explanation:
In order for the box to move it needs to overcome the maximum static friction force
Max Static Friction = μFn(normal force)
plug in givens
Max Static friction = 31.9226
Since 36.6>31.9226, the box will move
Mass= Wieght/g which is 45.8/9.8= 4.67kg
Fnet = Fapp-Fk
= 36.6-16.9918
=19.6082
=ma
Solve for a=4.19m/s^2