-15m -30 = -12m +6
3m = 36
m= 36/3 =12
Answer: 304.8 milimeter
Step-by-step explanation:
Answer:
$24,500 of commission
Step-by-step explanation:
350000*0.07 = 24,500
Answer:
The possible parking lengths are 45.96 feet and 174.031 feet
Step-by-step explanation:
Let x be the length of rectangular plot and y be the breadth of rectangular plot
A rectangular parking lot must have a perimeter of 440 feet
Perimeter of rectangular plot =2(l+b)=2(x+y)=440
2(x+y)=440
x+y=220
y=220-x
We are also given that an area of at least 8000 square feet.
So, ![xy \leq 8000](https://tex.z-dn.net/?f=xy%20%5Cleq%208000)
So,![x(220-x) \leq 8000](https://tex.z-dn.net/?f=x%28220-x%29%20%5Cleq%208000)
![220x-x^2 \leq 8000](https://tex.z-dn.net/?f=220x-x%5E2%20%5Cleq%208000)
So,![220x-x^2 = 8000\\-x^2+220x-8000=0](https://tex.z-dn.net/?f=220x-x%5E2%20%3D%208000%5C%5C-x%5E2%2B220x-8000%3D0)
General quadratic equation : ![ax^2+bx+c=0](https://tex.z-dn.net/?f=ax%5E2%2Bbx%2Bc%3D0)
Formula : ![x=\frac{-b \pm \sqrt{b^2-4ac}}{2a}](https://tex.z-dn.net/?f=x%3D%5Cfrac%7B-b%20%5Cpm%20%5Csqrt%7Bb%5E2-4ac%7D%7D%7B2a%7D)
![x=\frac{-220 \pm \sqrt{220^2-4(-1)(-8000)}}{2(-1)}\\x=\frac{-220 + \sqrt{220^2-4(-1)(-8000)}}{2(-1)} , \frac{-220 - \sqrt{220^2-4(-1)(-8000)}}{2(-1)}\\x=45.96,174.031](https://tex.z-dn.net/?f=x%3D%5Cfrac%7B-220%20%5Cpm%20%5Csqrt%7B220%5E2-4%28-1%29%28-8000%29%7D%7D%7B2%28-1%29%7D%5C%5Cx%3D%5Cfrac%7B-220%20%2B%20%5Csqrt%7B220%5E2-4%28-1%29%28-8000%29%7D%7D%7B2%28-1%29%7D%20%2C%20%5Cfrac%7B-220%20-%20%5Csqrt%7B220%5E2-4%28-1%29%28-8000%29%7D%7D%7B2%28-1%29%7D%5C%5Cx%3D45.96%2C174.031)
So, The possible parking lengths are 45.96 feet and 174.031 feet
Answer: The total number of colored papers is 18.
Step-by-step explanation:
Given: The ratio of coloured papers to wight papers is 3:8.
Let total number of colored papers = 3x
and total number of wight papers = 8x
Since, there are 48 wight papers , then
![8x=48](https://tex.z-dn.net/?f=8x%3D48)
![\Rightarrow\ x=6](https://tex.z-dn.net/?f=%5CRightarrow%5C%20x%3D6)
Now , number of colored papers = 3(6)=18
Hence, the total number of colored papers is 18.