Answer:
La probabilidad pedida es 
Explanation:
Sabemos que la probabilidad de que un nuevo producto tenga éxito es de 0.85. Sabemos también que se eligen 10 personas al azar y se les pregunta si comprarían el nuevo producto. Para responder a la pregunta, primero definiremos la siguiente variable aleatoria :
'' Número de personas que adquirirán el nuevo producto de 10 personas a las que se les preguntó ''
Ahora bien, si suponemos que la probabilidad de que el nuevo producto tenga éxito se mantiene constante
y además suponemos que hay independencia entre cada una de las personas al azar a las que se les preguntó ⇒ Podemos modelar a
como una variable aleatoria Binomial. Esto se escribe :
~
en donde
es el número de personas entrevistadas y
es la probabilidad de éxito (una persona adquiriendo el producto) en cada caso.
Utilizando los datos ⇒
~ 
La función de probabilidad de la variable aleatoria binomial es :
con 
Si reemplazamos los datos de la pregunta en la función de probabilidad obtenemos :
con 
Nos piden la probabilidad de que por lo menos 8 personas adquieran el nuevo producto, esto es :

Calculando
y
por separado y sumando, obtenemos que 
Answer:
hello your question is incomplete attached below is the missing part of the question
Consider an inverter operating a power supply voltage VDD. Assume that matched condition for this inverter. Make the necessary assumptions to get to an answer for the following questions.
answer : Nd ∝ rt
Explanation:
Determine how the delay and active power per device will change as the doping density of N- and P-MOSFET increases
Pactive ( active power ) = Efs * F
Pactive =
also note that ; Pactive ∝ Nd2 (
tD = K .
since K = constant
Hence : Nd ∝ rt
Answer:
a) Ef = 0.755
b) length of specimen( Lf )= 72.26mm
diameter at fracture = 9.598 mm
c) max load ( Fmax ) = 52223.24 N
d) Ft = 51874.67 N
Explanation:
a) Determine the true strain at maximum load and true strain at fracture
True strain at maximum load
Df = 9.598 mm
True strain at fracture
Ef = 0.755
b) determine the length of specimen at maximum load and diameter at fracture
Length of specimen at max load
Lf = 72.26 mm
Diameter at fracture
= 9.598 mm
c) Determine max load force
Fmax = 52223.24 N
d) Determine Load ( F ) on the specimen when a true strain et = 0.25 is applied during tension test
F = 51874.67 N
attached below is a detailed solution of the question above
I think that the answer would be B or C