1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
pochemuha
3 years ago
12

La probabilidad de que un nuevo producto tenga éxito es de 0.85. Si se eligen 10 personas al azar y se les pregunta si compraría

n el nuevo producto, ¿cuál es la probabilidad de que por lo menos 8 adquieran el nuevo producto?
Engineering
1 answer:
liq [111]3 years ago
7 0

Answer:

La probabilidad pedida es 0.820196

Explanation:

Sabemos que la probabilidad de que un nuevo producto tenga éxito es de 0.85. Sabemos también que se eligen 10 personas al azar y se les pregunta si comprarían el nuevo producto. Para responder a la pregunta, primero definiremos la siguiente variable aleatoria :

X: '' Número de personas que adquirirán el nuevo producto de 10 personas a las que se les preguntó ''

Ahora bien, si suponemos que la probabilidad de que el nuevo producto tenga éxito se mantiene constante (p=0.85) y además suponemos que hay independencia entre cada una de las personas al azar a las que se les preguntó ⇒ Podemos modelar a X como una variable aleatoria Binomial. Esto se escribe :

X ~ Bi(n,p) en donde ''n'' es el número de personas entrevistadas y ''p'' es la probabilidad de éxito (una persona adquiriendo el producto) en cada caso.

Utilizando los datos ⇒ X ~ Bi(10,0.85)

La función de probabilidad de la variable aleatoria binomial es :

p_{X}(x)=P(X=x)=\left(\begin{array}{c}n&x\end{array}\right)p^{x}(1-p)^{n-x}    con x=0,1,2,...,n

Si reemplazamos los datos de la pregunta en la función de probabilidad obtenemos :

P(X=x)=\left(\begin{array}{c}10&x\end{array}\right)(0.85)^{x}(0.15)^{10-x} con x=0,1,2,...,10

Nos piden la probabilidad de que por lo menos 8 personas adquieran el nuevo producto, esto es :

P(X\geq 8)=P(X=8)+P(X=9)+P(X=10)

Calculando P(X=8), P(X=9) y P(X=10) por separado y sumando, obtenemos que P(X\geq 8)=0.820196

You might be interested in
10–25. The 45° strain rosette is mounted on the surface of a shell. The following readings are obtained for each gage: ε a = −20
vazorg [7]

Answer:

The answer is 380.32×10^-6

Refer below for the explanation.

Explanation:

Refer to the picture for brief explanation.

7 0
3 years ago
What is the built-in pollution control system in an incinerator called
Kobotan [32]

Explanation:

hbyndbnn☝️

7 0
2 years ago
python Write a program that asks a user to type in two strings and that prints •the characters that occur in both strings. •the
Yuliya22 [10]

Answer:

see explanation

Explanation:

#we first get the elements as inputs

x = input("enter string A :")

y = input("enter string B :")

#then we make independent sets with each

x = set(x)

y = set(y)

#then the intersection of the two sets

intersection = set.intersection(x,y)

#another set for the alphabet

#we use set.difference to get the elements present in x and not in y, and

#viceversa, finally we get the difference between the alphabet and the #intersection of the elements in our strings

z = set('abcdefghijklmnopqrstuvwxyz')

print('\nrepeated :\n',intersection)

print('differences :\n',' Items in A and not B\n',

set.difference(x,y),'\nItems in B and not A\n',

set.difference(y,x))

print('\nItems in neither :\n',set.difference(z,intersection))

8 0
3 years ago
A 4-stroke Diesel engine with a displacement of Vd = 2.5x10^-3m^3 produces a mean effective pressure of 6.4 bar at the speed of
yKpoI14uk [10]

Answer:

The power developed by engine is 167.55 KW

Explanation:

Given that

V_d=2.5\times 10^{-3} m^3

Mean effective pressure = 6.4 bar

Speed = 2000 rpm

We know that power is the work done per second.

So

P=6.4\times 100\times 2.5\times 10^{-3}\times \dfrac{2\pi \times2000}{120}

We have to notice one point that we divide by 120 instead of 60, because it is a 4 cylinder engine.

P=167.55 KW

So the power developed by engine is 167.55 KW

4 0
3 years ago
A three-point bending test is performed on a glass specimen having a rectangular cross section of height d 5 mm (0.2 in.) and wi
Anon25 [30]

Answer:

The flexural strength of a specimen is = 78.3 M pa

Explanation:

Given data

Height = depth = 5 mm

Width = 10 mm

Length L = 45 mm

Load = 290 N

The flexural strength of a specimen is given by

\sigma = \frac{3 F L}{2 bd^{2} }

\sigma = \frac{3(290)(45)}{2 (10)(5)^{2} }

\sigma = 78.3 M pa

Therefore the flexural strength of a specimen is = 78.3 M pa

4 0
3 years ago
Other questions:
  • Nicholas wants to verify whether a file is a hard link to a file within the same directory. Which of the following commands coul
    6·1 answer
  • Nitrogen gas flows through a long, constant-diameter adiabatic pipe. It enters at 100 psia and 120°F and leaves at 50 psia and 7
    14·2 answers
  • Determine the resultant normal force across the cross section at point B. Express your answer to three significant figures and i
    6·1 answer
  • A liquid's viscosity increases with increasing temperature. a)-True b)-False
    6·1 answer
  • Adore.aaliyah_ add me loves !
    7·1 answer
  • Air at 27°C and a velocity of 5 m/s passes over the small region As (20 mm × 20 mm) on a large surface, which is maintained at T
    6·1 answer
  • A spring (70 N/m ) has an equilibrium length of 1.00 m. The spring is compressed to a length of 0.50 m and a mass of 2.2 kg is p
    14·2 answers
  • What is a beam on a bridge? what does it do?
    6·1 answer
  • Anything you want to do in Hootsuite can be found in the ________, with the main workspace in the _________?
    15·1 answer
  • Technician A says that the low level brake fluid switch on a master cylinder will turn on the brake warning light when the syste
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!