Answer:
Answer for the question is given in the attachment .
Explanation:
By applying the concepts of differential and derivative, the differential for y = (1/x) · sin 2x and evaluated at x = π and dx = 0.25 is equal to 1/2π.
<h3>How to determine the differential of a one-variable function</h3>
Differentials represent the <em>instantaneous</em> change of a variable. As the given function has only one variable, the differential can be found by using <em>ordinary</em> derivatives. It follows:
dy = y'(x) · dx (1)
If we know that y = (1/x) · sin 2x, x = π and dx = 0.25, then the differential to be evaluated is:





By applying the concepts of differential and derivative, the differential for y = (1/x) · sin 2x and evaluated at x = π and dx = 0.25 is equal to 1/2π.
To learn more on differentials: brainly.com/question/24062595
#SPJ1
Answer:
the three part are mass, spring, damping
Explanation:
vibrating system consist of three elementary system namely
1) Mass - it is a rigid body due to which system experience vibration and kinetic energy due to vibration is directly proportional to velocity of the body.
2) Spring - the part that has elasticity and help to hold mass
3) Damping - this part considered to have zero mass and zero elasticity.
An electromagnet is a made coil associated with a ferromagnetic core. This way, the strength of the magnet is controlled by the input current. A solenoid is a simple shape used in magnetostatics or magnetics. ... A solenoid is a cylindrical coil of wire whose diameter is small compared to its length.
Answer:
Evaporation.
Explanation:
Evaporation is the stage of the Water Cycle where water turns into water vapor. The steps following Evaporation in order include Condensation, Precipitation, and Transpiration.