1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Levart [38]
2 years ago
7

BOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

Engineering
1 answer:
sergejj [24]2 years ago
8 0

Answer:

BOO

Explanation:

You might be interested in
The pressure distribution over a section of a two-dimensional wing at 4 degrees of incidence may be approximated as follows: Upp
Aliun [14]

Answer:

The lift coefficient is 0.3192 while that of the moment about the leading edge is-0.1306.

Explanation:

The Upper Surface Cp is given as

Cp_u=-0.8 *0.6 +0.1 \int\limits^1_{0.6} \, dx =-0.8*0.6+0.4*0.1

The Lower Surface Cp is given as

Cp_l=-0.4 *0.6 +0.1 \int\limits^1_{0.6} \, dx =-0.4*0.6+0.4*0.1

The difference of the Cp over the airfoil is given as

\Delta Cp=Cp_l-Cp_u\\\Delta Cp=-0.4*0.6+0.4*0.1-(-0.8*0.6-0.4*0.1)\\\Delta Cp=-0.4*0.6+0.4*0.1+0.8*0.6+0.4*0.1\\\Delta Cp=0.4*0.6+0.4*0.2\\\Delta Cp=0.32

Now the Lift Coefficient is given as

C_L=\Delta C_p cos(\alpha_i)\\C_L=0.32\times cos(4*\frac{\pi}{180})\\C_L=0.3192

Now the coefficient of moment about the leading edge is given as

C_M=-0.3*0.4*0.6-(0.6+\dfrac{0.4}{3})*0.2*0.4\\C_M=-0.1306

So the lift coefficient is 0.3192 while that of the moment about the leading edge is-0.1306.

5 0
3 years ago
Match the terms with the correct definitions.
arsen [322]
I think answer should be the first one please give me brainlest let me know if it’s correct or not okay thanks bye
7 0
2 years ago
Acoke can with inner diameter(di) of 75 mm, and wall thickness (t) of 0.1 mm, has internal pressure (pi) of 150 KPa and is suffe
NemiM [27]

Answer:

All 3 principal stress

1. 56.301mpa

2. 28.07mpa

3. 0mpa

Maximum shear stress = 14.116mpa

Explanation:

di = 75 = 0.075

wall thickness = 0.1 = 0.0001

internal pressure pi = 150 kpa = 150 x 10³

torque t = 100 Nm

finding all values

∂1 = 150x10³x0.075/2x0,0001

= 0.5625 = 56.25mpa

∂2 = 150x10³x75/4x0.1

= 28.12mpa

T = 16x100/(πx75x10³)²

∂1,2 = 1/2[(56.25+28.12) ± √(56.25-28.12)² + 4(1.207)²]

= 1/2[84.37±√791.2969+5.827396]

= 1/2[84.37±28.33]

∂1 = 1/2[84.37+28.33]

= 56.301mpa

∂2 = 1/2[84.37-28.33]

= 28.07mpa

This is a 2 d diagram donut is analyzed in 2 direction.

So ∂3 = 0mpa

∂max = 56.301-28.07/2

= 14.116mpa

6 0
3 years ago
Explain what a margin of safety is in driving as well as how it can help minimize risk.
Yakvenalex [24]

Answer:

A safety margin is the space left between your vehicle and the next to provide room, time and visibility at every instant

Explanation:

A safety margin is defined as an allowance given between your vehicle and the next vehicle in front to provide enough room, visibility and time to move in a safe manner to prevent the occurrence of an accident at anytime the frontal vehicle suddenly stops or slows down

Safety margins help minimize risks in the following way

1) A common knowledge of safety margins, improves predictability among road users, thereby minimizing the risk traffic accidents caused due to late communication

2) The use of safety margins helps minimize the risk due to a change in driving conditions such as when the road becomes more slippery from being covered with fluid that is being wetted

3) Safety margin can help prevent the occurrence of an accident between vehicles due to failure of a car system, such as a punctured tire or failed breaking system

4) Safety margin helps to protect road users from the introduction of obstacles on the main roads such as ongoing road construction, broken down vehicles, road blockage by vehicles involved in an accident etc

5) Safety margin help protect road users from being involved in an accident due to the loss of driving focus of the driver of the frontal vehicle

6 0
3 years ago
What is the difference Plastic vs elastic deformation.
Reika [66]

Answer:

What is the difference Plastic vs elastic deformation

Explanation:

The elastic deformation occurs when a low stress is apply over a metal or metal structure, in this process, the stress' deformation is temporary and it's recover after the stress is removed. In other words, this DOES NOT affects the atoms separation.

The plastic deformation occurs when the stress apply over the metal or metal structure is sufficient to deform the atomic structure making the atoms split, this is a crystal separation on a limited amount of atoms' bonds.

8 0
2 years ago
Other questions:
  • Where do I buy a 1997 MK4 Toyota Supra twin turbo manual for cheap
    11·1 answer
  • Are engineers needed in today’s society ? Why or why not ? I need a short three paragraph essay !!! Please help me !!!
    13·1 answer
  • The viscosity of all liquids decreases as the temperature is a) Increased b) decreased c) maintained constant d) fluctuating e)
    12·1 answer
  • The densities of several materials are given in SI units. Convert these to densities in U.S. customary units (slug/ft3), and als
    12·1 answer
  • An inventor claims to have developed a power cycle operating between hot and cold reservoirs at 1175 K and 295 K, respectively,
    9·1 answer
  • Which substance(s) have no fixed shape and no fixed volume?
    5·2 answers
  • What is the difference between digital instruments and decimal scaled instruments to measure
    6·1 answer
  • The cylinder C is being lifted using the cable and pulley system shown.
    8·1 answer
  • The notation on one's license that the person must wear glasses
    9·1 answer
  • When recycling paint booth filters, you must put them in an __________ container for transport as a solid waste.
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!