Answer:
The object at 50°C will have a higher kinetic energy.
Explanation:
Temperature is a measure of the average kinetic energy of the particles in an object. As you introduce more energy into the system (e.g. heat the object), the particles on average move faster because they have more kinetic energy.
Answer:
1380 kilogram/cubic meter
Answer: Friction is the resistance to motion of one object moving relative to another. It is not a fundamental force, like gravity or electromagnetism. Instead, scientists believe it is the result of the electromagnetic attraction between charged particles in two touching surfaces.
Explanation:
Answer is: the molar mass od sodium carbonate (Na₂CO₃) is 106.0 g/mol.
M(Na₂CO₃) = 2 · Ar(Na) + Ar(C) + 3 · Ar(O).
M(Na₂CO₃) = 2 · 23 + 12 + 3 · 16 · g/mol.
M(Na₂CO₃) = 46 + 12 + 48 · g/mol.
M(Na₂CO₃) = 106 g/mol; molar mass of sodium carbonate.
Ar is relative atomic mass (the ratio of the average mass of atoms of a chemical element to one unified atomic mass unit) of an element.
Answer:
0.84 mol
Explanation:
Given data:
Moles of ZnCl₂ produced = ?
Mass of Zn = 55.0 g
Solution:
Chemical equation:
2HCl + Zn → ZnCl₂ + H₂
Number of moles of Zn:
Number of moles = mass / molar mass
Number of moles = 55.0 g/ 65.38 g/mol
Number of moles = 0.84 mol
Now we will compare the moles of Zn with ZnCl₂ from balance chemical equation.
Zn : ZnCl₂
1 : 1
0.84 : 0.84
So from 55 g of Zn 0.84 moles of zinc chloride will be produced.