Answer:
0.062mol
Explanation:
Using ideal gas law as follows;
PV = nRT
Where;
P = pressure (atm)
V = volume (L)
n = number of moles (mol)
R = gas law constant (0.0821Latm/molK)
T = temperature (K)
Based on the information provided;
P = 152 Kpa = 152/101 = 1.50atm
V = 0.97L
n = ?
T = 12°C = 12 + 273 = 285K
Using PV = nRT
n = PV/RT
n = (1.5 × 0.97) ÷ (0.0821 × 285)
n = 1.455 ÷ 23.39
n = 0.062mol
Answer:
0.583 kilojoules
Explanation:
The amount of heat required to pop a single kernel can be calculated using the formula as follows:
Q = m × c × ∆T
Where;
Q = amount of heat (J)
m = mass of water (g)
c = specific heat capacity of water (4.184 J/g°C)
∆T = change in temperature
From the given information, m = 0.905 g, initial temperature (room temperature) = 21°C , final temperature = 175°C, Q = ?
Q = m × c × ∆T
Q = 0.905 × 4.184 × (175°C - 21°C)
Q = 3.786 × 154
Q = 583.044 Joules
In kilojoules i.e. we divide by 1000, the amount of heat is:
= 583.04/1000
= 0.583 kilojoules
F. because electronegativity generally increases as you move from left to right across a periodic table, and F is farther right than O
According to florida wildlife group who experimentally tape magnets to crocodile heads to disrupt their homing ability so they don't wander into residential areas