The equation for the reaction is:
C₄H₈O₂ + C₂H₅OH = C₆H₁₂O₂ + H₂O
Now you see that the number of the moles of butanoic acid
and etyl butyrate is equal in
the reaction. That means;
number of moles of C₄H₈O₂ = number of moles of C₆H₁₂O₂
mass of C₄H₈O₂/ Molar mass of C₄H₈O₂ = mass of C₆H₁₂O₂/ molar mass of C₆H₁₂O₂
mass of C₆H₁₂O₂ = molar mass of C₆H₁₂O₂ x mass of C₄H₈O₂/ Molar mass of C₄H₈O₂
Now, assuming <span>100% yield, the mass
of ethyl butyrate produced is: </span>
<span>= 7.45/88.11 x 116.16</span>
<span>=9.82g</span>
<span>Thus, the theoretical yield of ethyl butyrate is 9.82g.</span>
Possible products in this reaction are the products 2 and 3.
<h3>What is the Friedel Crafts reaction?</h3>
The Friedel Crafts reaction is one in which the electrophile is created by a Lewis acid reaction between the AlCl3 and the alkylhalide reactant .
Now we know that there is the possibility of two products in this reaction due to a resonance shift as such possible products in this reaction are the products 2 and 3.
Learn more about Friedel Crafts reaction:brainly.com/question/14993566?
#SPJ1
Answer:
0.550
Explanation:
The absorbance (A) of a substance depends on its concentration (c) according to Beer-Lambert law.
A = ε . <em>l</em> . c
where,
ε: absorptivity of the species
<em>l</em>: optical path length
A 45 mM phosphate solution (solution A) had an absorbance of 1.012.
A = ε . <em>l</em> . c
1.012 = ε . <em>l</em> . 45 mM
ε . <em>l</em> = 0.022 mM⁻¹
We can find the concentration of the second solution using the dilution rule.
C₁ . V₁ = C₂ . V₂
45mM . 11mL = C₂ . 20.0 mL
C₂ = 25 mM
The absorbance of the second solution is:
A = (ε . <em>l</em> ). c
A = (0.022 mM⁻¹) . 25 mM = 0.55 (rounding off to 3 significant figures = 0.550)
Answer:
-24.76 kJ/g; -601.8 kJ/mol
Explanation:
There are two heat flows in this experiment.
Heat from reaction + heat absorbed by calorimeter = 0
q1 + q2 = 0
mΔH + CΔT = 0
Data:
m = 0.1375 g
C = 3024 J/°C
ΔT = 1.126 °C
Calculations:
0.1375ΔH + 3024 × 1.126 = 0
0.1375ΔH + 3405 = 0
0.1375ΔH = -3405
ΔH = -24 760 J/g = -24.76 kJ/g
ΔH = -24.76 kJ/g ×24.30 g/mol = -601.8 kJ/mol