Answer:
C) 43,2°C
Explanation:
<em>Sensible heat</em> is the amount of thermal energy that is required to change the temperature of an object, the equation for calculating the heat change is given by:
Q=msΔT
where:
- Q, heat that has been absorbed or realeased by the substance [J]
- m, mass of the substance [g]
- s, specific heat capacity [J/g°C]
- ΔT, changes in the substance temperature [°C]
To solve the problem, we clear ΔT of the equation and then replace our data:
Q=890 [J],
m=16,6 [g],
s=2,74 [J/g°C]
Q=msΔT.......................ΔT=Q/ms
Δ
°C
As:
ΔT=Tfinal-Tinitial
Tfinal=ΔT+Tinitial
Tfinal=21,7+21,5=43,2°C
The final temperature of the ethanol is 43,2°C.
Answer:
Hence the given statement is false.
Explanation:
For low-speed subsonic wind tunnels, the air density remains nearly constant decreasing the cross-section area cause the flow to extend velocity, and reduce pressure. Similarly increasing the world cause to decrease and therefore the pressure to extend.
The speed within the test section is decided by the planning of the tunnel.
Thus by adjusting the pressure difference won't change the worth of test section velocity.
Answer:copper , stainless steal
Wrought iron
Explanation:
Answer:
P = 4.745 kips
Explanation:
Given
ΔL = 0.01 in
E = 29000 KSI
D = 1/2 in
LAB = LAC = L = 12 in
We get the area as follows
A = π*D²/4 = π*(1/2 in)²/4 = (π/16) in²
Then we use the formula
ΔL = P*L/(A*E)
For AB:
ΔL(AB) = PAB*L/(A*E) = PAB*12 in/((π/16) in²*29*10⁶ PSI)
⇒ ΔL(AB) = (2.107*10⁻⁶ in/lbf)*PAB
For AC:
ΔL(AC) = PAC*L/(A*E) = PAC*12 in/((π/16) in²*29*10⁶ PSI)
⇒ ΔL(AC) = (2.107*10⁻⁶ in/lbf)*PAC
Now, we use the condition
ΔL = ΔL(AB)ₓ + ΔL(AC)ₓ = ΔL(AB)*Cos 30° + ΔL(AC)*Cos 30° = 0.01 in
⇒ ΔL = (2.107*10⁻⁶ in/lbf)*PAB*Cos 30°+(2.107*10⁻⁶ in/lbf)*PAC*Cos 30°= 0.01 in
Knowing that PAB*Cos 30°+PAC*Cos 30° = P
we have
(2.107*10⁻⁶ in/lbf)*P = 0.01 in
⇒ P = 4745.11 lb = 4.745 kips
The pic shown can help to understand the question.
Answer:
a) There is no any private member of smart which are public members of superSmart.
Explanation: