1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
scoray [572]
2 years ago
6

Which of the following is not a function of the suspension system?_____

Engineering
1 answer:
tatyana61 [14]2 years ago
4 0
The awnser is D cause it is
You might be interested in
Saturated water vapor undergoes a throttling process from 1bar to a 0.35bar. What is the change in temperature for this process?
mamaluj [8]

Answer:

-25.63°C.

Explanation:

We know that throttling is a constant enthalpy process

      h_1=h_2

From steal table

We know that if we know only one property in side the dome then we will find the other property by using steam property table.

  Temperature at saturation pressure 1 bar is 99.63°C and  Temperature at saturation pressure 0.35 bar is about 74°C .

So from above we can say that change in temperature is -25.63°C.

But there is no any option for that .

4 0
2 years ago
Please answer fast. With full step by step solution.​
lina2011 [118]

Let <em>f(z)</em> = (4<em>z </em>² + 2<em>z</em>) / (2<em>z </em>² - 3<em>z</em> + 1).

First, carry out the division:

<em>f(z)</em> = 2 + (8<em>z</em> - 2) / (2<em>z </em>² - 3<em>z</em> + 1)

Observe that

2<em>z </em>² - 3<em>z</em> + 1 = (2<em>z</em> - 1) (<em>z</em> - 1)

so you can separate the rational part of <em>f(z)</em> into partial fractions. We have

(8<em>z</em> - 2) / (2<em>z </em>² - 3<em>z</em> + 1) = <em>a</em> / (2<em>z</em> - 1) + <em>b</em> / (<em>z</em> - 1)

8<em>z</em> - 2 = <em>a</em> (<em>z</em> - 1) + <em>b</em> (2<em>z</em> - 1)

8<em>z</em> - 2 = (<em>a</em> + 2<em>b</em>) <em>z</em> - (<em>a</em> + <em>b</em>)

so that <em>a</em> + 2<em>b</em> = 8 and <em>a</em> + <em>b</em> = 2, yielding <em>a</em> = -4 and <em>b</em> = 6.

So we have

<em>f(z)</em> = 2 - 4 / (2<em>z</em> - 1) + 6 / (<em>z</em> - 1)

or

<em>f(z)</em> = 2 - (2/<em>z</em>) (1 / (1 - 1/(2<em>z</em>))) + (6/<em>z</em>) (1 / (1 - 1/<em>z</em>))

Recall that for |<em>z</em>| < 1, we have

\displaystyle\frac1{1-z}=\sum_{n=0}^\infty z^n

Replace <em>z</em> with 1/<em>z</em> to get

\displaystyle\frac1{1-\frac1z}=\sum_{n=0}^\infty z^{-n}

so that by substitution, we can write

\displaystyle f(z) = 2 - \frac2z \sum_{n=0}^\infty (2z)^{-n} + \frac6z \sum_{n=0}^\infty z^{-n}

Now condense <em>f(z)</em> into one series:

\displaystyle f(z) = 2 - \sum_{n=0}^\infty 2^{-n+1} z^{-(n+1)} + 6 \sum_{n=0}^\infty z^{-n-1}

\displaystyle f(z) = 2 - \sum_{n=0}^\infty \left(6+2^{-n+1}\right) z^{-(n+1)}

\displaystyle f(z) = 2 - \sum_{n=1}^\infty \left(6+2^{-(n-1)+1}\right) z^{-n}

\displaystyle f(z) = 2 - \sum_{n=1}^\infty \left(6+2^{2-n}\right) z^{-n}

So, the inverse <em>Z</em> transform of <em>f(z)</em> is \boxed{6+2^{2-n}}.

4 0
3 years ago
Find the Rectangular form of the following phasors?
almond37 [142]

Answer:

The angles are missing in the question.

The angles are :

45,     30,    60,     90,    -34,     -56,      20,     -42,  -65,    -15

P=10, P=5,  P=25, P=54, P=65, P=95, P=250, P=8, P=35, P=150

Explanation:

1. P = 10,   θ = 45°  rectangular coordinates

x = r cosθ  ,   y = r sinθ

So, rectangular form is x + iy

x = P cosθ = 10 cos 45°

  = 7.07

y =P sinθ = 10 sin 45°

  = 7.07

Therefore, rectangular form

x + iy = 7.07 + i (7.07)

2. P = 5 , θ = 30°

x = 5 cos  30° = 4.33

y = 5 sin  30° = 2.5

So, (x+iy) = 4.33 + i (2.5)

3. P = 25 , θ = 60°

x = 25 cos  60° = 12.5

y = 25 sin  60° = 21.65

So, (x+iy) = 12.5 + i (21.65)

4. P = 54 , θ = 90°

x = 54 cos  90° = 0

y = 54 sin  90° = 54

So, (x+iy) = 0+ i (54)

5. P = 65 , θ = -34°

x = 65 cos  (-34°) = 53.88

y = 65 sin  (-34°) = -36.34

So, (x+iy) = 53.88 - i (36.34)

6. P = 95 , θ = -56°

x = 95 cos  (-56)° = 53.12

y = 95 sin  (-56)° = -78.75

So, (x+iy) = 53.12 - i (78.75)

7. P = 250 , θ = 20°

x = 250 cos  20° = 234.92

y = 250 sin 20° = 85.5

So, (x+iy) = 234.92 + i (85.5)

8. P = 8 , θ = (-42)°

x = 8 cos  (-42)° = 5.94

y = 8 sin  (-42)° = -5.353

So, (x+iy) = 5.94 - i (5.353)

9. P = 35 , θ = (-65)°

x = 35 cos  (-65)° = 14.79

y = 35 sin  (-65)° = -31.72

So, (x+iy) = 14.79 - i (31.72)

10. P = 150 , θ = (-15)°

x = 150 cos  (-15)° = 144.88

y = 150 sin  (-15)° = -38.82

So, (x+iy) = 144.88 - i (38.82)

6 0
2 years ago
A tank with some water in it begins to drain. The function v ( t ) = 46 − 3.5 t determines the volume of the water in the tank (
olchik [2.2K]

Answer with Explanation:

Part a)

The volume of water in the tank as a function of time is plotted in the below attached figure.

The vertical intercept of the graph is 46.

Part b)

The vertical intercept represents the volume of water that is initially present in the tank before draining begins.

Part c)

To find the time required to completely drain the tank we calculate the volume of the water in the tank to zero.

0=46-3.5t\\\\3.5=46\\\\\therefore t=\frac{46}{3.5}=13.143minutes

Part d)

The horizontal intercept represents the time it takes to empty the tank which as calculated above is 13.143 minutes.

7 0
3 years ago
Three tool materials (high-speed steel, cemented carbide, and ceramic) are to be compared for the same turning operation on a ba
Tpy6a [65]

Answer:

Among all three tools, the ceramic tool is taking the least time for the production of a batch, however, machining from the HSS tool is taking the highest time.

Explanation:

The optimum cutting speed for the minimum cost

V_{opt}= \frac{C}{\left[\left(T_c+\frac{C_e}{C_m}\right)\left(\frac{1}{n}-1\right)\right]^n}\;\cdots(i)

Where,

C,n = Taylor equation parameters

T_h =Tool changing time in minutes

C_e=Cost per grinding per edge

C_m= Machine and operator cost per minute

On comparing with the Taylor equation VT^n=C,

Tool life,

T= \left[ \left(T_t+\frac{C_e}{C_m}\right)\left(\frac{1}{n}-1\right)\right]}\;\cdots(ii)

Given that,  

Cost of operator and machine time=\$40/hr=\$0.667/min

Batch setting time = 2 hr

Part handling time: T_h=2.5 min

Part diameter: D=73 mm =73\times 10^{-3} m

Part length: l=250 mm=250\times 10^{-3} m

Feed: f=0.30 mm/rev= 0.3\times 10^{-3} m/rev

Depth of cut: d=3.5 mm

For the HSS tool:

Tool cost is $20 and it can be ground and reground 15 times and the grinding= $2/grind.

So, C_e= \$20/15+2=\$3.33/edge

Tool changing time, T_t=3 min.

C= 80 m/min

n=0.130

(a) From equation (i), cutting speed for the minimum cost:

V_{opt}= \frac {80}{\left[ \left(3+\frac{3.33}{0.667}\right)\left(\frac{1}{0.13}-1\right)\right]^{0.13}}

\Rightarrow 47.7 m/min

(b) From equation (ii), the tool life,

T=\left(3+\frac{3.33}{0.667}\right)\left(\frac{1}{0.13}-1\right)\right]}

\Rightarrow T=53.4 min

(c) Cycle time: T_c=T_h+T_m+\frac{T_t}{n_p}

where,

T_m= Machining time for one part

n_p= Number of pieces cut in one tool life

T_m= \frac{l}{fN} min, where N=\frac{V_{opt}}{\pi D} is the rpm of the spindle.

\Rightarrow T_m= \frac{\pi D l}{fV_{opt}}

\Rightarrow T_m=\frac{\pi \times 73 \times 250\times 10^{-6}}{0.3\times 10^{-3}\times 47.7}=4.01 min/pc

So, the number of parts produced in one tool life

n_p=\frac {T}{T_m}

\Rightarrow n_p=\frac {53.4}{4.01}=13.3

Round it to the lower integer

\Rightarrow n_p=13

So, the cycle time

T_c=2.5+4.01+\frac{3}{13}=6.74 min/pc

(d) Cost per production unit:

C_c= C_mT_c+\frac{C_e}{n_p}

\Rightarrow C_c=0.667\times6.74+\frac{3.33}{13}=\$4.75/pc

(e) Total time to complete the batch= Sum of setup time and production time for one batch

=2\times60+ {50\times 6.74}{50}=457 min=7.62 hr.

(f) The proportion of time spent actually cutting metal

=\frac{50\times4.01}{457}=0.4387=43.87\%

Now, for the cemented carbide tool:

Cost per edge,

C_e= \$8/6=\$1.33/edge

Tool changing time, T_t=1min

C= 650 m/min

n=0.30

(a) Cutting speed for the minimum cost:

V_{opt}= \frac {650}{\left[ \left(1+\frac{1.33}{0.667}\right)\left(\frac{1}{0.3}-1\right)\right]^{0.3}}=363m/min [from(i)]

(b) Tool life,

T=\left[ \left(1+\frac{1.33}{0.667}\right)\left(\frac{1}{0.3}-1\right)\right]=7min [from(ii)]

(c) Cycle time:

T_c=T_h+T_m+\frac{T_t}{n_p}

T_m= \frac{\pi D l}{fV_{opt}}

\Rightarrow T_m=\frac{\pi \times 73 \times 250\times 10^{-6}}{0.3\times 10^{-3}\times 363}=0.53min/pc

n_p=\frac {7}{0.53}=13.2

\Rightarrow n_p=13 [ nearest lower integer]

So, the cycle time

T_c=2.5+0.53+\frac{1}{13}=3.11 min/pc

(d) Cost per production unit:

C_c= C_mT_c+\frac{C_e}{n_p}

\Rightarrow C_c=0.667\times3.11+\frac{1.33}{13}=\$2.18/pc

(e) Total time to complete the batch=2\times60+ {50\times 3.11}{50}=275.5 min=4.59 hr.

(f) The proportion of time spent actually cutting metal

=\frac{50\times0.53}{275.5}=0.0962=9.62\%

Similarly, for the ceramic tool:

C_e= \$10/6=\$1.67/edge

T_t-1min

C= 3500 m/min

n=0.6

(a) Cutting speed:

V_{opt}= \frac {3500}{\left[ \left(1+\frac{1.67}{0.667}\right)\left(\frac{1}{0.6}-1\right)\right]^{0.6}}

\Rightarrow V_{opt}=2105 m/min

(b) Tool life,

T=\left[ \left(1+\frac{1.67}{0.667}\right)\left(\frac{1}{0.6}-1\right)\right]=2.33 min

(c) Cycle time:

T_c=T_h+T_m+\frac{T_t}{n_p}

\Rightarrow T_m=\frac{\pi \times 73 \times 250\times 10^{-6}}{0.3\times 10^{-3}\times 2105}=0.091 min/pc

n_p=\frac {2.33}{0.091}=25.6

\Rightarrow n_p=25 pc/tool\; life

So,

T_c=2.5+0.091+\frac{1}{25}=2.63 min/pc

(d) Cost per production unit:

C_c= C_mT_c+\frac{C_e}{n_p}

\Rightarrow C_c=0.667\times2.63+\frac{1.67}{25}=$1.82/pc

(e) Total time to complete the batch

=2\times60+ {50\times 2.63}=251.5 min=4.19 hr.

(f) The proportion of time spent actually cutting metal

=\frac{50\times0.091}{251.5}=0.0181=1.81\%

3 0
3 years ago
Other questions:
  • Name two types of Transformers.
    6·1 answer
  • First step in solving frames in to solve support reactions when looking at the frame as a whole. a)- True b)-False
    9·1 answer
  • Heat in the amount of 100 kJ is transferred directly from a hot reservoir at 1200 K to a cold reservoir at 600 K. Calculate the
    15·1 answer
  • 3. Write down the total thermal resistance for a double-pipe heat exchanger. Show how to convert from total resistance to an ove
    12·2 answers
  • Help me! Phone Phoebe on 07375410044.
    7·2 answers
  • So far in your lifetime, about how much garbage have you contributed
    12·1 answer
  • Selling a new vehicle pays a salesperson $1500. Selling a used vehicle pays a commission of 5% of the selling price. Write an in
    9·1 answer
  • Special certification is required for technicians who handle which of the following systems?
    10·1 answer
  • Accidents occur as a result of ____ and ____.
    7·1 answer
  • Nec ________ covers selection of time-delay fuses for motor- overload protection.
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!