Explanation:
He would work on the thing like in the method you work on your question.
Answer:
Disaggregation
Explanation:
In a company it is a way to create operational plans that are focused, either by time or by section.
Answer:
(a) 0 kJ
(b) 9.81 kJ
(c) 31.32 m/s
Explanation:
(a)
From the law of conservation of energy, energy can only be transformed from one state to another. At a height of 50 m, all the kinetic energy is converted to potential energy hence KE=0
(b)
Potential energy, PE=mgh where m is the mass, g is acceleration due to gravity and h is the height
Substituting 50 m for h and 20 Kg for m, taking g as 9.81 then
PE=20*9.81*50=9810 J=9.81 kJ
(c)
Relating the equation of potential energy to the equation of kinetic energy, which is 
where v is the velocity of the mass

Substituting 50 m for h and taking g as 9.81 then

Answer:
V = 6.33 m/s
Explanation:
Given:
- The length of the wire L = 0.02 m
- The diameter of the wire D = 0.0005 m
- The calibration expression V = 0.0000625*h^2
- Environment temperature T_inf = 298 K
- Surface temperature T_s = 348 K
- The voltage drop dV = 5 V
- The electric current I = 0.1 A
Find:
- the velocity of Air
Solution:
- Calculate the surface area of the wire:
A = pi*D*L
A = pi*(0.0005)*(0.02) = 0.00003142 m^2
- The rate of energy in the wire P:
P = I*dV = 0.1*5 = 0.5 W
- Apply Newton's Law of Cooling:
P = h*A*(T_s - T_inf)
h = P /A*(T_s - T_inf)
Plug in the values:
h= 0.5/ 0.00003142*(348 - 298)
h = 318.27 W /m^2K
- Using the calibration relationship given, compute the velocity of air:
V = 6.25*10^-5 * h^2
V = 6.25*10^-5 * (318.27)^2
V = 6.33 m/s