3-SAT ≤p TSP
If P ¹ NP, then no NP-complete problem can be solved in polynomial time.
both the statements are true.
<u>Explanation:</u>
- 3-SAT ≤p TSP due to any complete problem of NP to other problem by exits of reductions.
- If P ¹ NP, then 3-SAT ≤p 2-SAT are the polynomial time algorithm are not for 3-SAT. In P, 2-SAT is found, 3- SAT polynomial time algorithm implies the exit of reductions. 3 SAT does not have polynomial time algorithm when P≠NP.
- If P ¹ NP, then no NP-complete problem can be solved in polynomial time. because for the NP complete problem individually gets the polynomial time algorithm for the others. It may be in P for all the problems, the implication of latter is P≠NP.
Answer:
The given blanks can be filled as given below
Voltmeter must be connected in parallel
Explanation:
A voltmeter is connected in parallel to measure the voltage drop across a resistor this is because in parallel connection, current is divided in each parallel branch and voltage remains same in parallel connections.
Therefore, in order to measure the same voltage across the voltmeter as that of the voltage drop across resistor, voltmeter must be connected in parallel.
Answer:
Distributes a floor load or weight
Explanation:
solution from c hegg. hope it helps. see photos explanation
Features of Multidimensional scaling(MDS) from scratch is described below.
Explanation:
Multidimensional scaling (MDS) is a way to reduce the dimensionality of data to visualize it. We basically want to project our (likely highly dimensional) data into a lower dimensional space and preserve the distances between points.
If we have some highly complex data that we project into some lower N dimensions, we will assign each point from our data a coordinate in this lower dimensional space, and the idea is that these N dimensional coordinates are ordered based on their ability to capture variance in the data. Since we can only visualize things in 2D, this is why it is common to assess your MDS based on plotting the first and second dimension of the output.
If you look at the output of an MDS algorithm, which will be points in 2D or 3D space, the distances represent similarity. So very close points = very similar, and points farther away from one another = less similar.
Working of MDS
The input to the MDS algorithm is our proximity matrix. There are two kinds of classical MDS that we could use: Classical (metric) MDS is for data that has metric properties, like actual distances from a map or calculated from a vector
.Nonmetric MDS is for more ordinal data (such as human-provided similarity ratings) for which we can say a 1 is more similar than a 2, but there is no defined (metric) distance between the values of 1 and 2.
Uses
Multidimensional scaling (MDS) is a means of visualizing the level of similarity of individual cases of a dataset. MDS is used to translate "information about the pairwise 'distances' among a set of n objects or individuals" into a configuration of n points mapped into an abstract Cartesian space.