Answer:
<h2>9.03 × 10²³ atoms </h2>
Explanation:
The number of atoms of Al can be found by using the formula
<h3>N = n × L</h3>
where n is the number of moles
N is the number of entities
L is the Avogadro's constant which is
6.02 × 10²³ entities
From the question we have
N = 1.5 × 6.02 × 10²³
We have the final answer as
<h3>9.03 × 10²³ atoms</h3>
Hope this helps you
Sugar is made of molecules that are bonded together based on the positively and negatively charged areas. They will slowly dissolve in water. Pebbles are solids. They will sit in water for a long time. Though shale pebbles will break apart or fall apart.
A ground state electron configuration follows the Aufbau Principle that states that electrons should be filled up in orbitals in increasing energy. In the given sequences, the right configuration is
<span>1s2 2s2 2p6 3s2 3p6 4s2 3d8.
2) the possible confirmation that follows Aufbau's principle is
D. </span><span>-[Kr] 5s24d105p3</span>
Answer:
Hello
you're answer should be E.HOCH2CH2OH
hope this answer is correct
The specific heat capacity is intensive, and does not depend on the quantity.
We can categorize a property of the compound as either intensive or extensive when defining a particular aspect of it. The extent of a drug or compound is a quality that is influenced by the sample size used. However, the intense property is independent of the quantity (we can say that it is independent on the amount of the sample used). One such example of an intensive property is density.
The specific heat capacity of a substance or a compound describes the amount of heat (in Joules) needed to increase the temperature of one gram of the substance by 1 unit.
The specific heat capacity is independent on the amount of substance used, therefore, it is classified as an intensive property of a substance. The specific heat capacity will not depend on the mass of the given substance and it will be a constant value for each substance.
So the specific heat capacity is intensive, and does not depend on the quantity, but the heat capacity is extensive, so two grams of liquid water have twice the heat capacitance of 1 gram, but the specific heat capacity, the heat capacity per gram, is the same, 4.184 (J/g.K).
To learn more about the specific heat capacity please click on the link brainly.com/question/16559442
#SPJ4