Answer:
see calculations in explanation
Explanation:
percent = part/total x 100%
part = ∑ atomic mass of element
- hydrogen = 1.008 amu (atomic mass units)
- carbon = 12.011 amu
- nitrogen = 14.007 amu
total = ∑ molecular mass of compound
= H amu + C amu + Namu
= 1.008 amu + 12.011 amu + 14.007 amu
= 27.026 amu
%H = (1.008amu/27.026amu)100% = 3.730%
%C = (12.011amu/27.026amu)100% = 44.442%
%N = (14.007amu/27.026amu)100% = 51.827%
Check results ∑%values = 100%
3.730% + 44.442% + 51.827% = 99.999% ≅ 100%
Answer:
1.30464 grams of glucose was present in 100.0 mL of final solution.
Explanation:

Moles of glucose = 
Volume of the solution = 100 mL = 0.1 L (1 mL = 0.001 L)
Molarity of the solution = 
A 30.0 mL sample of above glucose solution was diluted to 0.500 L:
Molarity of the solution before dilution = 
Volume of the solution taken = 
Molarity of the solution after dilution = 
Volume of the solution after dilution= 



Mass glucose are in 100.0 mL of the 0.07248 mol/L glucose solution:
Volume of solution = 100.0 mL = 0.1 L

Moles of glucose = 
Mass of 0.007248 moles of glucose :
0.007248 mol × 180 g/mol = 1.30464 grams
1.30464 grams of glucose was present in 100.0 mL of final solution.
Answer:
Alpha particle
Explanation:
An alpha particle is a helium nucleus, 2 protons and 2 neutrons, loss of an alpha particle give a new element with an atomic number 2 less than the original isotope and an atomic mass that is lower by about 4 amu.
Answer:
<h2>14.85 moles </h2>
Explanation:
To find the number of moles in a substance given it's number of entities we use the formula

where n is the number of moles
N is the number of entities
L is the Avogadro's constant which is
6.02 × 10²³ entities
From the question we have

We have the final answer as
<h3>14.85 moles</h3>
Hope this helps you