Considerando la definición de molaridad, la molaridad de una solución acuosa de ácido sulfúrico (H₂SO₄) es 0.5
.
La molaridad es una medida de la concentración de un soluto en una disolución que se define como el número de moles de soluto que están disueltos en un determinado volumen.
La molaridad de una solución se calcula dividiendo los moles del soluto por el volumen de la solución:

La Molaridad se expresa en las unidades
.
En este caso, sabes que una solución acuosa se preparó al mezclar 4 moles del ácido con suficiente agua hasta completar 8 litros de solución. Entonces, sabes que:
- número de moles de soluto= 4 moles
- volumen= 8 litros
Reemplazando en la definición de molaridad:

Resolviendo:
Molaridad= 0.5 
Finalmente, la molaridad de una solución acuosa de ácido sulfúrico (H₂SO₄) es 0.5
.
<em>Aprende más</em>:
B
A qualitative observation describes the characteristics of a substance without quantifying them.
I’m pretty sure it’s A) upper right!
This would not be a good idea because bacteria is everywhere and function as a part of out everyday lives. Starting off with animals, many animals rely on bacteria to digest their food so many animals would begin to die off. Ecosystems would fail due to nitrogen not being able to cycle.
Without bacteria biological waste would build up causing a drop in population, eventually going extinct.
Basically, the balance of nature between humans, animals, and plants would no longer exist.
Answer:
Considering the half-life of 10,000 years, after 20,000 years we will have a fourth of the remaining amount.
Explanation:
The half-time is the time a radioisotope takes to decay and lose half of its mass. Therefore, we can make the following scheme to know the amount remaining after a period of time:
Time_________________ Amount
t=0_____________________x
t=10,000 years____________x/2
t=20,000 years___________x/4
During the first 10,000 years the radioisotope lost half of its mass. After 10,000 years more (which means 2 half-lives), the remaining amount also lost half of its mass. Therefore, after 20,000 years, the we will have a fourth of the initial amount.