Answer: 1. C. polar covalent: electrons shared between silicon and sulfur but attracted more to the sulfur
2. B) 
3. B) Fluorine
Explanation:
1. A polar covalent bond is defined as the bond which is formed when there is a difference of electronegativities between the atoms.
Electronegativity difference = electronegativity of sulphur- electronegativity of silicon = 2.5 -1.8 = 0.7
Thus as electronegativity difference is less than 1.7 , the cond is polar covalent and as electronegativity of sulphur is more , the electrons will be more towards sulphur.
2. A molecular compound is usually composed of two or more nonmetal elements. Example:
Ionic compound is formed by the transfer of electrons from metals to non metals. Example:
,
and 
3. For formation of a neutral ionic compound, the charges on cation and anion must be balanced. The cation is formed by loss of electrons by metals and anions are formed by gain of electrons by non metals.
Here K is having an oxidation state of +1 and as the compound formed is KZ, the oxidation state of non metallic element Z should be -1. Thus the element Z is flourine which exists as diatomic gas 
I don’t care about it tbh like I don’t even care about that stuff but the answer is 29272728
Answer:
Following are the solution to this question:
Explanation:
Please find the complete question in the attachment.
Start of Laboratory
Dissolve 2-naphthol in the round bottom flask with ethanol.
Add pellets of sodium hydroxide and hot chips. Attach a condenser.
Heat for 20 minutes under reflux, until the put a burden dissolves.
After an additional hour, add 1-Bromobutane and reflux.
Pour the contents into a beaker with ice from a round bottom flask.
On a Bachner funnel, absorb the supernatant by vacuum filtration.
Utilizing cold water to rinse the material and dry that on the filter.
Ending of the Lab
<span>My only guess is obtain a metal and heat it in a boiling water bath (of known temperature) this will be your initial temperature. Now obtain a calorimeter cup with water of known temperature as well. Place the metal into the calorimeter cup and record the temperature after 5 minutes. You now have delta T, mass of the metal, and Q. Solve for C.
Hope this helps xox :)</span>
Molar mass of CuSO4 * 5 H2O
= 63.546 + 32 + 16*4 + 5*18
= 249.546 g/mol
Mass of water in that formula: 5 * 18 = 90 g/mol
Percent by mass of water = 90 / 249.546 = 36%
<span>So, 36% of your 8.22 g is water. 0.36 * 8.22= 2.95 g of water
</span>