9514 1404 393
Answer:
Step-by-step explanation:
Let x and y represent amounts invested at 6% and 9%, respectively.
y = 3x +58 . . . . . . . the amount invested at 9%
0.06x +0.09y = 1097.19 . . . . . . total interest earned
__
Substituting for y, we have ...
0.06x +0.09(3x +58) = 1097.19
0.33x + 5.22 = 1097.19 . . . . . . . . . simplify
0.33x = 1091.97 . . . . . . . . . . . . subtract 5.22
x = 3309 . . . . . . . . . . . . . . . . divide by 0.33
y = 3(3309) +58 = 9985
$3309 is invested at 6%; $9985 is invested at 9%.
Responder:
La pizza con un perímetro de 100 cm es más grande ¿verdad?
Explicación paso a paso:
Deja que la pizza tenga forma circular.
Sea el área de la pizza = πd² / 4 y;
Perímetro de la pizza = πd
d es el diámetro de la pizza
Si la madre dice que el que tiene un perímetro de 100 cm es más grande, para estar seguros necesitamos obtener el diámetro de la pizza. La de mayor diámetro será la pizza más grande.
P = 100cm
100 = πd
d = 100 / π
d = 100 / 3,14
d = 31,85 cm
El diámetro de la pizza mamá es de 31,85 cm.
Si el padre dice que el que tiene un área de 100 cm² es más grande, obtengamos también el diámetro para estar seguros.
A = πd² / 4
100 = πd² / 4
400 = πd²
d² = 400 / π
d² = 400 / 3,14
d² = 127,39
d = √127,39
d = 11,29 cm
Por lo tanto, el diámetro de la pizza padre es de 11,29 cm.
Dado que el diámetro de la pizza madre es mayor que el de esa, la pizza con un perímetro de 100 cm es más grande, lo que demuestra que la madre tiene razón.
Answer:
Verified
Step-by-step explanation:
Let the 2x2 matrix A be in the form of:
![\left[\begin{array}{cc}a&b\\c&d\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7Da%26b%5C%5Cc%26d%5Cend%7Barray%7D%5Cright%5D)
Where det(A) = ad - bc # 0 so A is nonsingular:
Then the transposed version of A is
![A^T = \left[\begin{array}{cc}a&c\\b&d\end{array}\right]](https://tex.z-dn.net/?f=A%5ET%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7Da%26c%5C%5Cb%26d%5Cend%7Barray%7D%5Cright%5D)
Then the inverted version of transposed A is
![(A^T)^{-1} = \frac{1}{ad - cb} \left[\begin{array}{cc}a&-c\\-b&d\end{array}\right]](https://tex.z-dn.net/?f=%28A%5ET%29%5E%7B-1%7D%20%3D%20%5Cfrac%7B1%7D%7Bad%20-%20cb%7D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7Da%26-c%5C%5C-b%26d%5Cend%7Barray%7D%5Cright%5D)
The inverted version of A is:
![A^{-1} = \frac{1}{ad - bc}\left[\begin{array}{cc}a&-b\\-c&d\end{array}\right]](https://tex.z-dn.net/?f=A%5E%7B-1%7D%20%3D%20%5Cfrac%7B1%7D%7Bad%20-%20bc%7D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7Da%26-b%5C%5C-c%26d%5Cend%7Barray%7D%5Cright%5D)
The transposed version of inverted A is:
![(A^{-1})^T = \frac{1}{ad - bc}\left[\begin{array}{cc}a&-c\\-b&d\end{array}\right]](https://tex.z-dn.net/?f=%28A%5E%7B-1%7D%29%5ET%20%3D%20%5Cfrac%7B1%7D%7Bad%20-%20bc%7D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7Da%26-c%5C%5C-b%26d%5Cend%7Barray%7D%5Cright%5D)
We can see that

So this theorem is true for 2 x 2 matrices
If 1 inch = 1 foot then 1 foot = 1 inch.
With this, you can make a ratio of 1 foot:1 inch, or 1:1.
Starting with the first dimension, 27 feet, just change the 1 to 27 in the ratio.
27:?
To find how many inches this is in the scale drawing, find how much 1 had to be multiplied by to get to 27. This is 27, since anything times 1 is itself.
Just multiply the other side by 27 as well to get the answer for the first dimension.
1 • 27 = 27
So 27 feet = 27 inches in the scale drawing.
Now do the same for the second dimension.
1:1
20:?
1 • 20 = 20
20:20
The answer is that the scale drawing has dimensions of 27 inches by 20 inches if 1 inch = 1 foot is the scale