Answer:
Developing Conservation Case Studies for Decision-making ... titled “Producer Experiences” or “Case Studies” for use in future planning efforts and ... convince a producer of the benefits of conservation, or at least help them understand the ... Easy to read, especially for those that are not comfortable with economics or data.
The average kinetic energy of the gas particles is greater in container B because it has a higher temperature.
<h3>What is temperature?</h3>
The term temperature refers to a measure of the average kinetic energy of the molecules of body. This means that molecules that are at high temperature tend to move faster than the molecules that are at low temperature.
As such, the higher temperature of the molecules of the gas in B shows that the molecules in B are faster than those in A thus the correct statement is; "the average kinetic energy of the gas particles is greater in container B because it has a higher temperature."
Learn more about temperature:brainly.com/question/7510619
#SPJ1
Missing parts;
The picture shows two containers filled with a gas.
Two equally sized containers are shown with tight lids and each container has a thermometer. The container on the le is labeled A and the one on the right is labeled B. The thermometer inside container B shows a higher temperature than the thermometer inside container A.
Which statement is correct?
The average kinetic energy of the gas particles is greater in container A because it has a lower temperature.
The average kinetic energy of the gas particles is greater in container B because it has a higher temperature.
The gas particles in both containers have the same average kinetic energy because t have the same volume.
The gas particles in both containers have the same average kinetic energy because t have equal number of particles.
You might need to take more pictures so we can see all the equations clearly
Answer:
q = -6464.9 kJ
Explanation:
We are given that the heat of combustion is ∆H° = −394 kJ per mol of carbon.Therefore what we need to do is calculate how many moles of C are in the lump of coal by finding its mass since the density is given.
vol = 5.6 cm x 5.1 cm x 4.6 cm = 131.38 cm³
m = d x v = 1.5 g/cm³ x 131.38 cm³ = 197.06 g
mol C = m/MW = 197.06 g/ 12.01g/mol = 16.41 mol
q = −394 kJ /mol C x 16.41 mol C = -6464.9 kJ
Answer:
Explanation:
If we look at the structure of 1-Bromopropane; we will see that it is a derivative of alkane family by the the substitution of an alkyl group. The position of the Bromine in the propane is 1, making 1-Bromopropane a primary alkyl-halide.
Primary alkyl - halide undergo SN2 mechanism. This nucleophilic reaction needs to be a strong alkyl halide , such as 1-Bromopropane used otherwise it will result to a reactive mechanism if a weak electrophile is used.
However, the critical and the main objective here is to Draw the major substitution product if the reaction proceeds in good yield. If no reaction is expected or yields will be poor, draw the starting material in the box. If a charged product is formed, be sure to draw the counterion.
The attached diagrams portraying this notions is shown in the attached file below.