The correct is D.
Water is a polar molecule and it has polar bonds, which carry partially positive and partially negative charges. This polar bond increases the attraction between molecules of water and thus it requires a greater energy to break the bond between the molecules of water compare to carbon dioxide, which is a non polar molecule. Thus, water has a higher boiling point than carbon dioxide.
The answer is c Yep Allll day
The density of ice does not affect the melting rate. But, adding an object does affect the melt rate. The reason this is is because when there is an object, there is less to melt. Hence, affecting the melting rate.
Answer:
[OH⁻] = 3.34x10⁻³M; Percent ionization = 0.54%; pH = 11.52
Explanation:
Kb of the reaction:
NH3 + H2O(l) ⇄ NH4+ + OH-
Is:
Kb = 1.8x10⁻⁵ = [NH₄⁺] [OH⁻] / [NH₃]
<em>As all NH₄⁺ and OH⁻ comes from the same source we can write: </em>
<em>[NH₄⁺] = [OH⁻] = X</em>
<em>And as </em>[NH₃] = 0.619M
1.8x10⁻⁵ = [X] [X] / [0.619M]
1.11x10⁻⁵ = X²
3.34x10⁻³ = X = [NH₄⁺] = [OH⁻]
<h3>[OH⁻] = 3.34x10⁻³M</h3><h3 />
% ionization:
[NH₄⁺] / [NH₃] * 100 = 3.34x10⁻³M / 0.619M * 100 = 0.54%
pH:
As pOH = -log [OH-]
pOH = 2.48
pH = 14 - pOH
<h3>pH = 11.52</h3>
PH scale is used to determine how acidic or basic a solution is.
pH can be calculated as follows;
by knowing the ph we can calculate pOH
pH + pOH = 14
pOH = 14 - 8.1
pOH = 5.9
pOH is used to calculate the hydroxide ion concentration
pOH = -log[OH⁻]
[OH⁻] = antilog(-pOH)
[OH⁻] = 1.26 x 10⁻⁶ M
therefore hydroxide ion concentration is 1.26 x 10⁻⁶ M