Answer:
5.6L
Explanation:
At STP, the pressure and temperature of an ideal gas is
P = 1 atm
T = 273.15k
Volume =?
Mass = 9.5g
From ideal gas equation,
PV = nRT
P = pressure
V = volume
n = number of moles
R = ideal gas constant =0.082J/mol.K
T = temperature of the ideal gas
Number of moles = mass / molar mass
Molar mass of F2 = 37.99g/mol
Number of moles = mass / molar mass
Number of moles = 9.5 / 37.99
Number of moles = 0.25moles
PV = nRT
V = nRT/ P
V = (0.25 × 0.082 × 273.15) / 1
V = 5.599L = 5.6L
The volume of the gas is 5.6L
Answer: Atoms are the hardest substance to separate
I think thee correct answer from the choices listed above is option D. <span>When a physical change in a sample occurs, composition of the sample does not change. It stays the same. Also, the properties of the sample will still be the same. Hope this answers the question.</span>
Answer:
a) ΔGrxn = 6.7 kJ/mol
b) K = 0.066
c) PO2 = 0.16 atm
Explanation:
a) The reaction is:
M₂O₃ = 2M + 3/2O₂
The expression for Gibbs energy is:
ΔGrxn = ∑Gproducts - ∑Greactants
Where
M₂O₃ = -6.7 kJ/mol
M = 0
O₂ = 0

b) To calculate the constant we have the following expression:

Where
ΔGrxn = 6.7 kJ/mol = 6700 J/mol
T = 298 K
R = 8.314 J/mol K

c) The equilibrium pressure of O₂ over M is:

Answer:
No, there is no evidence that the manufacturer has a problem with underfilled or overfilled bottles, due that according our results we cannot reject the null hypothesis.
Explanation:
according to this exercise we have the following:
σ^2 =< 0.01 (null hypothesis)
σ^2 > 0.01 (alternative hypothesis)
To solve we can use the chi-square statistical test. To reject or not the hypothesis, we have that the rejection region X^2 > 30.14
Thus:
X^2 = ((n-1) * s^2)/σ^2 = ((20-1)*0.0153)/0.01 = 29.1
Since 29.1 < 30.14, we cannot reject the null hypothesis.