We use the osmotic pressure to determine the concentration of the solute in the solution. Then, we multiply the volume of the solution to determine the number of moles of solute particles. We need to establish to equations since we have two unknowns, the mass of of each solute. We do as follows:
osmotic pressure = CRT
<span>C = 7.75 / 0.08205 (296.15) = 0.3189 mol / L</span>
<span>moles of particles = C*V = 0.3189*0.250 =0.0797 mol </span>
<span>0.0797 = moles of sucrose + 2*moles of salt </span>
<span>x + 2y = 0.0797 </span>
<span>and </span>
<span>x(MMsucrose) + y(MMNaCl) = 10.2</span>
<span>342x + 58.5y = 10.2
</span>
<span>solve for x and y
</span>
<span>x = 0.0252 mol sucrose</span>
<span>y = 0.0273 mol NaCl
</span>
<span>mass Sucrose = 0.0252(342) = 8.6184 g </span>
<span>mass NaCl = 0.0273(58.5) = 1.5971 g </span>
<span>% NaCl = (1.5971 / 10.2)*100 = 15.66%</span>
Answer:
HF
Explanation:
Hf has hydrogen bonding which is the strongest intermolecular forces. The stronger the IM forces, the higher the boiling point.
Two parts are stage and coarse focus
Answer:
Gases are easily compressed. We can see evidence of this in Table 1 in Thermal Expansion of Solids and Liquids, where you will note that gases have the largest coefficients of volume expansion. The large coefficients mean that gases expand and contract very rapidly with temperature changes. In addition, you will note that most gases expand at the same rate, or have the same β. This raises the question as to why gases should all act in nearly the same way, when liquids and solids have widely varying expansion rates.
The answer lies in the large separation of atoms and molecules in gases, compared to their sizes, as illustrated in Figure 2. Because atoms and molecules have large separations, forces between them can be ignored, except when they collide with each other during collisions. The motion of atoms and molecules (at temperatures well above the boiling temperature) is fast, such that the gas occupies all of the accessible volume and the expansion of gases is rapid. In contrast, in liquids and solids, atoms and molecules are closer together and are quite sensitive to the forces between them.
Answer: 20.0 g of hydrogen chloride must simultaneously be formed
Explanation:
The balanced chemical reaction is :

According to the law of conservation of mass, mass can neither be created nor be destroyed. The mass on reactant side must be equal to the mass on product side.
Thus mass of reactants = mass of products
Given : mass of ammonium chloride = mass of reactants = 29.4 g
mass of ammonia = 9.4 g
mass of products = mass of ammonia + mass of hydrogen chloride
9.4 g +mass of hydrogen chloride = 29.4 g
mass of hydrogen chloride = 20.0 g