Answer: D. An action-reaction force pair
Explanation: When you sit in your chair, your body exerts a downward force on the chair and the chair exerts an upward force on your body. There are two forces resulting from this interaction - a force on the chair and a force on your body. Another example would be a person pushing against a wall (action force), and the wall exerts an equal and opposite force against the person.
Answer:
The center of mass for the object is
from the origin
Explanation:
From the question we are told that
The mass of the first object is 
The position of first object with respect to origin 
The mass of the second object is 
The position of second object with respect to origin 
The mass of the third object is 
The position of third object with respect to origin 
The mass of the fourth object is 
The position of fourth object with respect to origin 
Generally the center of mass of the object along the x-axis is zero because all the mass lie on the y axis
Generally the location of the center mass of the object is mathematically represented as

=>
=>
Answer:
(a)0.531m/s
(b)0.00169
Explanation:
We are given that
Mass of bullet, m=4.67 g=
1 kg =1000 g
Speed of bullet, v=357m/s
Mass of block 1,
Mass of block 2,
Velocity of block 1,
(a)
Let velocity of the second block after the bullet imbeds itself=v2
Using conservation of momentum
Initial momentum=Final momentum







Hence, the velocity of the second block after the bullet imbeds itself=0.531m/s
(b)Initial kinetic energy before collision



Final kinetic energy after collision



Now, he ratio of the total kinetic energy after the collision to that before the collision
=
=0.00169
Answer:
42.96 km/s
Explanation:
From the conservation of Energy

Mass gets cancelled

= Escape velocity of Earth = 11.2 km/s
= Velocity of projectile = 44.4 km/s

The velocity of the spacecraft when it is more than halfway to the star is 42.96 km/s
Answer:
a) Directamente proporcional
Explanation:
El peso se puede definir como la fuerza que actúa sobre un cuerpo o un objeto como resultado de la gravedad.
Matemáticamente, el peso de un objeto viene dado por la fórmula;
Donde;
m es la masa del objeto.
g es la aceleración debida a la gravedad.
De la expresión matemática, podemos deducir que el valor del peso de un objeto es directamente proporcional a la masa del objeto.
Por lo tanto, un aumento en la masa de un objeto provocaría un aumento en el peso del objeto y viceversa.