Answer: When the car speed triples, momentum also triples but Kinetic energy increases 9 times or by 9 fold.
Explanation:
The momentum of a car (an object) is
p= mv
where
m is =the mass of the object( in this case car)
v is its= velocity
While the kinetic energy is is given by the formulae
K=1/2mv²
To determine how momentum and kinetic energy of the car changes when the speed of the object triples, We have that the new velocity,
v¹= 3v
So that the momentum change becomes
p¹=mv¹=m (3v)= 3mv
mv=p
therefore p¹= 3p
we can see that the momentum also triples.
And the kinetic energy change becomes
K¹=1/2m(v¹)²= 1/2m (3v)²
= 1/2m9v²= 1/2 x m x 9 x v²=9 x1/2mv²
1/2mv²=K
K¹= Kinetic energy = 9k
but Kinetic energy increases 9 times
Answer:
A
Explanation:
They drove 30km north. The displacement adds up to 25km therefore making the distance greater
Hope this helps!
A wave is basically propagation of disturbances—that is, deviations from a state of rest or equilibrium—from place to place in a regular and organized way. Most familiar are surface waves on water, but both sound and light travel as wavelike disturbances, and the motion of all subatomic particles exhibits wavelike properties.
Given:
u = 0, initial speed (sprinter starts from rest)
v = 11.5 m/s, final speed
s = 15 m, distance traveled to attain final speed.
Let
a = average acceleration,
t = time taken to attain final speed.
Then
v² = u² + 2as
or
(11.5 m/s)² = 2*(a m/s²)*(15 m)
a = 11.5²/(2*15) = 4.408 m/s²
Also
v = u +a t
or
(11.5 m/s) = (4.408 m/s²)*(t s)
t = 11.5/4.408 = 2.609 s
Answer:
The average acceleration is 4.41 m/s² (nearest hundredth).
The time required is 2.61 s (nearest hundredth).