Answer:
![f(x) = \frac{1}{3}x - 4](https://tex.z-dn.net/?f=%20f%28x%29%20%3D%20%5Cfrac%7B1%7D%7B3%7Dx%20-%204%20)
Step-by-step explanation:
Determine the slope value, m, and the y-intercept value, b.
Find the slope, m using two points, (0, -4) and (3, -3).
![slope (m) = \frac{y_2 - y_1}{x_2 - x_1} = \frac{-3 -(-4)}{3 - 0} = \frac{1}{3}](https://tex.z-dn.net/?f=%20slope%20%28m%29%20%3D%20%5Cfrac%7By_2%20-%20y_1%7D%7Bx_2%20-%20x_1%7D%20%3D%20%5Cfrac%7B-3%20-%28-4%29%7D%7B3%20-%200%7D%20%3D%20%5Cfrac%7B1%7D%7B3%7D%20)
m = ⅓.
The y-intercept (b) = -4 (this is where the y-axis is intercepted by the line)
To get the linear function equation, substitute m = ⅓, and b = -4 into ![f(x) = mx + b](https://tex.z-dn.net/?f=%20f%28x%29%20%3D%20mx%20%2B%20b%20)
The linear function equation would be:
✔️ ![f(x) = \frac{1}{3}x + (-4)](https://tex.z-dn.net/?f=%20f%28x%29%20%3D%20%5Cfrac%7B1%7D%7B3%7Dx%20%2B%20%28-4%29%20)
![f(x) = \frac{1}{3}x - 4](https://tex.z-dn.net/?f=%20f%28x%29%20%3D%20%5Cfrac%7B1%7D%7B3%7Dx%20-%204%20)