It is fairly easy to build an electromagnet. All you need to do is wrap some insulated copper wire around an iron core. If you attach a battery to the wire, an electric current will begin to flow and the iron core will become magnetized. When the battery is disconnected, the iron core will lose its magnetism. Follow these steps.
Step 1 - Gather the Materials
One iron nail fifteen centimeters (6 in) long
Three meters (10 ft) of 22 gauge insulated, stranded copper wire
One or more D-cell batteries
Step 2 - Remove some Insulation
Step 3 - Wrap the Wire Around the Nail
Step 4 - Connect the Battery
<h2>
Answer</h2>
The physical state of the elements depends upon the <u>attraction forces </u>and their <u>kinetic energy</u>.
<h2>
Explanation</h2>
The elements or substances are fixed with each other with the help of different chemical forces including ionic bonding, covalent bonding, H- bonding etc. The strength of these forces is also one of the factors that affect their physical natures. For example, covalent or ionic bonds are the strongest bonds than all other bonds and metals that contain these forces are mostly in solid form. The kinetic motion of electrons in the element also affects the physical state of the element and potential of bonding.
Answer: Load divided by it effort
Explanation:
Mechanical advantage of any machine is its load divided by its effort
Wavespeed = frequency x wavelength
= 14 x 9
= 126 mm/s
= 0.126 m/s
Answer:
S = V t where S is the horizontal distance traveled
1/2 g t^2 = H where H is the vertical distance traveled
t^2 = 2 H / g
V^2 = S^2 / t^2 = S^2 g / (2 H) combining equations
tan theta = H / S
V^2 = S g / (2 tan theta)
Using S = L cos theta
V^2 = L g cos theta / (2 tan theta)
Giving V in terms of L and theta