Answer:
14.3 m/s
Explanation:
velocity equation
v= d/t
v= 60/4.2
v=14.28
round it to 1 decimal place
v= 14.3m/s
The roughness of the surface, the mass of the object, and the area of contact.
Answer:
1902.75 kg
Explanation:
From Law of conservation of momentum,
m₁u₁ + m₂u₂ = V (m₁ + m₂).................... Equation 1
make m₂ the subject of the equation,
m₂ = (m₁V - m₁u₁)/(u₂-V)..................... Equation 2
Where m₁ = mass of the truck, m₂ = mass of the car, u₁ initial velocity of the truck, u₂ = initial velocity of the car V = common velocity
Given: m₁ = 2537 kg, u₁ = 14, V= 8 m/s, u₂ = 0 m/s ( as the car was at rest waiting at a traffic light)
Substituting into equation 2.
m₂ =[2537(8) - 2537(14)]/(0-8)
m₂ = (20296-35518)/-8
m₂ = -15222/-8
m₂ = 1902.75 kg.
Thus the mass of the car = 1902.75 kg
Answer:
5.972x10^27 x 10^-3 = 5.972x10^24
Explanation:
1g = 10^-3 kg => So the mass of Earth in kg is 5.972x10^24
Answer:
-1486 KJ
Explanation:
The work done by an electric field on a charged body is:
W = ΔV * q
where ΔV = change in voltage
q = total charge
The total charge of Avogadro's number of electrons is:
6.0221409 * 10^(23) * -1.6023 * 10^(-19) = -9.65 * 10^(4)
The change in voltage, ΔV, is:
9.20 - (6.90) = 15.4
Therefore, the work done is:
W = -9.65 * 10^(4) * 15.4 = -1.486 * 10^6 J = -1486 KJ
The negative sign means that the motion of the electrons is opposite the electrostatic force.