Answer: A barrier should be created to overcome the atmosphere of the Venus, while launching spacecraft to Venus.
Explanation:
The atmosphere of Venus consists of 96.5% carbon dioxide, other composition includes nitrogen and other gases in trace amounts. The large amount of carbon dioxide in the atmosphere can extinguish the missile of the launcher of spacecraft thus it will become difficult in launch of spacecraft to the Venus.
You can find this on google easily
Answer:
group 1, 2 and 3 tend to get rid of electrons and start to form compounds with groups 7, 6, and 5.
Explanation:
Answer:
[OH⁻] = 3.34x10⁻³M; Percent ionization = 0.54%; pH = 11.52
Explanation:
Kb of the reaction:
NH3 + H2O(l) ⇄ NH4+ + OH-
Is:
Kb = 1.8x10⁻⁵ = [NH₄⁺] [OH⁻] / [NH₃]
<em>As all NH₄⁺ and OH⁻ comes from the same source we can write: </em>
<em>[NH₄⁺] = [OH⁻] = X</em>
<em>And as </em>[NH₃] = 0.619M
1.8x10⁻⁵ = [X] [X] / [0.619M]
1.11x10⁻⁵ = X²
3.34x10⁻³ = X = [NH₄⁺] = [OH⁻]
<h3>[OH⁻] = 3.34x10⁻³M</h3><h3 />
% ionization:
[NH₄⁺] / [NH₃] * 100 = 3.34x10⁻³M / 0.619M * 100 = 0.54%
pH:
As pOH = -log [OH-]
pOH = 2.48
pH = 14 - pOH
<h3>pH = 11.52</h3>
Answer:
B) 1270 torr
Explanation:
Given data
- Initial volume (V₁): 5.00 L
- Initial pressure (P₁): 760 torr
- Final volume (V₂): 3.00 L
We can find the final pressure using Boyle's law.
P₁ × V₁ = P₂ × V₂
P₂ = P₁ × V₁/V₂
P₂ = 760 torr × 5.00 L/3.00 L
P₂ = 1.27 × 10³ torr = 1270 torr
The final pressure is 1270 torr.