Answer:
124.98
Explanation:
The molar mass of phosphorus, M=PVwRT=1×34.05×10−30.0625×0.08314×819=124.98.
Answer:
XY would have a higher melting point than NaCl.
Explanation:
The electrostatic force (F) between ions in an ionic lattice can be estimated using Coulomb's Law.

where,
k is the Coulomb's constant
q₁ and q₂ are the charges of the ions
r is the distance between the ions
X⁺⁺ and Y⁻⁻ are doubly charged with respect to Na⁺ and Cl⁻ so the force between them is 4 times the force between Na⁺ and Cl⁻. Since the force is stronger, it would require more energy to break it to take it to the liquid state, so a higher melting point is expected.
The Kinetic Molecular Theory has 5 main tenets, and they basically explain that the gas molecules are in constant motion. It is random and it causes constant collisions between the particles and also with the container's walls.
So, the answer is B. Kinetic Molecular Theory.
Answer : The balanced reduction half-reaction is:

Explanation :
Redox reaction or Oxidation-reduction reaction : It is defined as the reaction in which the oxidation and reduction reaction takes place simultaneously.
Oxidation reaction : It is defined as the reaction in which a substance looses its electrons. In this, oxidation state of an element increases. Or we can say that in oxidation, the loss of electrons takes place.
Reduction reaction : It is defined as the reaction in which a substance gains electrons. In this, oxidation state of an element decreases. Or we can say that in reduction, the gain of electrons takes place.
The given balanced redox reaction is :

The half oxidation-reduction reactions are:
Oxidation reaction : 
Reduction reaction : 
In order to balance the electrons, we multiply the oxidation reaction by 2 and reduction reaction by 3 and then added both equation, we get the balanced redox reaction.
Oxidation reaction : 
Reduction reaction : 
The balanced redox reaction will be:

Thus, the balanced reduction half-reaction is:
