To calculate the molarity you only need to know the number of moles in the solution and the volume of that solution. This exercise gives both and with that you divide moles by volume(usually in liters).
500 ml equals 0,5 L
molarity= number of moles/ volume
molarity=0,75 x 0,5
= 0,375 mol/L
Answer:
we will use the Clausius-Clapeyron equation to estimate the vapour pressures of the boiling ethanol at sea level pressure of 760mmHg:
ln (P2/P1) =
-
)
where
P1 and P2 are the vapour pressures at temperatures T1 and T2
Δ
vapH = the enthalpy of vaporization of the ETHANOL
R = the Universal Gas Constant
In this problem,
P
1
=
100 mmHg
; T
1
=
34.7 °C
=
307.07 K
P
2
=
760mmHg
T
2
=T⁻²=?
Δ
vap
H
=
38.6 kJ/mol
R
=
0.008314 kJ⋅K
-1
mol
-1
ln
(
760/10)=(0.00325 - T⁻²) (38.6kJ⋅mol-1
/0.008314
)
0.0004368=(0.00325 - T⁻²)
T⁻²=0.002813
T² = 355.47K
<h2>Answer:</h2>
2 hydrogen atoms.
<h2>Explanations:</h2>
Given the chemical formula H2SO4,
The compound shows that the formula has 4 atoms of oxygen, one atom of sulfur and 2 hydrogen atoms.
Therefore, the number of hydrogen atom in the molecule H2SO4 is 2 hydrogen atoms.