Answer:
Here we have some of the requirement of practical fuel are
1. It must contain large amount of stored energy. So that more amount of power output available to run the engines, motors etc.
2. It must occur in abundance in nature or be easy to produce.
3. The fuel must be made up of elements that combine easily with oxygen. Foe example if hydrogen molecules reacts with oxygen. Then the products are at the reaction of lower energy than the reactants, the result is the explosive release of energy and the product of water.
Answer:
Density (φ) = 0,8827 Kg/L
Specific weight (Ws) = 8,65 N/L
Specific gravity (Gs) = 0,8827 (without unit)
Explanation:
The density formula: φ =
I know the mass "m", I need to find out the volume of the cylinder (V)
V = π* r²*h
The radius "r" is equal to half the diameter (150mm) = 75mm
Now I can find out the density (φ)
φ =
= 0,8827 Kg/L
The specific weight (Ws) is the relationship between the weight of substance (oil) and its volume. We apply the following formula:
Ws = φ*g
(g = gravity = 9,8 m/s²)
Finally, specific gravity (Gs) is the ratio between the density of a substance (oil) "φ(o)" and the density of water "φ(w)" :
Gs = φ(o) / φ(w)
(φ(w) = 1 Kg/L
Hope this can help you !!
Newton’s law of gravity is considered “universal” because it is believed to be applicable to the entire Universe (to a good approximation). Gravity does not just pull an apple from a tree, but also pulls the Moon to the Earth, the Earth to the Sun, and so on. Gravity is a fundamental force of nature.
The velocity of the ball when it strikes the ground, given the data is 21.56 m/s
<h3>Data obtained from the question</h3>
From the question given above, the following data were obtained:
- Time to reach ground from maximum height (t) = 2.2 s
- Initial velocity (u) = 0 m/s
- Acceleration due to gravity (g) = 9.8 m/s²
- Final velocity (v) =?
<h3>How to determine the velocity when the ball strikes the ground</h3>
The velocity of the ball when it strikes the ground can be obtained as illustrated below:
v = u + gt
v = 0 + (9.8 × 2.2)
v = 0 + 21.56
v = 21.56 m/s
Thus, the velocity of the ball when it strikes the ground is 21.56 m/s
Learn more about motion under gravity:
brainly.com/question/22719691
#SPJ1
The last choice. Two arrows and the arrow up is shorter than the arrow down. Since the guy is falling and he’s opened his chute, he’s slowing down but he’s still falling meaning the force of gravity is stronger than the air resistance.