Answer: 24.97 kg
Explanation:
The gravitational force between two objects of masses M1, and M2 respectively, and separated by a distance R, is:
F = G*(M1*M2)/R^2
Where G is the gravitational constant:
G = 6.67*10^-11 m^3/(kg*s^2)
In this case, we know that
R = 0.002m
F = 0.0104 N
and that M1 = M2 = M
And we want to find the value of M, then we can replace those values in the equation to get
0.0104 N = (6.67*10^-11 m^3/(kg*s^2))*(M*M)/(0.002m)^2
(0.0104 N)*(0.002m)^2/(6.67*10^-11 m^3/(kg*s^2)) = M^2
623.69 kg^2 = M^2
√(623.69 kg^2) = M = 24.97 kg
This means that the mass of each object is 24.97 kg
<h2>
After 26.28 seconds projectile returns 26.28 seconds.</h2>
Explanation:
Initial velocity = 450 ft/s = 137.16 m/s
Angle, θ = 70°
Consider the vertical motion of projectile,
When the projectile return to the ground we have
Displacement, s = 0 m
Acceleration, a = -9.81 m/s²
Initial velocity, u = 137.16 x sin70 = 128.89 m/s
Substituting in s = ut + 0.5 at²
s = ut + 0.5 at²
0 = 128.89 x t + 0.5 x (-9.81) x t²
t² - 26.28 t = 0
t ( t- 26.28) = 0
t = 0 s or t = 26.28 s
After 26.28 seconds projectile returns 26.28 seconds.
Answer:
No
Explanation:
Some objects gain momentum.
Answer:
Incomplete question, check attachment for the graph needed to solve problem.
A 8.1nm........
Explanation:
Electric Field is given as
E=V/d
Where V is voltage
And d is the distance apart
E is the electric field
The voltage V just before action of potential is -70mV,
The value d=8.1nm
d=8.1×10^-9m
E=V/d
E=-70×10^-3/8.1×10^-9
E=-8.6×10^6 N/C
Then the magnitude of the electric field is 8.6×10^6N/C
Answer: wavelength !!
hope this helped :)