1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
arlik [135]
2 years ago
5

a effort of 100n can raise a load of 2000n in a hydraulic press. calculate the cross-sectional area of a small piston in it. The

cross-sectional area of a large piston is 4m^s​
Physics
1 answer:
Anit [1.1K]2 years ago
5 0

Answer:

A_{1} = 0.2 m^{2}

Explanation:

The pressure on the pistons is given as;

Pressure = \frac{Force}{Area}

So that,

Pressure on the small piston = \frac{F_{1} }{A_{1} } and Pressure on the large piston = \frac{F_{2} }{A_{2} }

Thus,

\frac{F_{1} }{A_{1} } = \frac{F_{2} }{A_{2} }

Given that: F_{1} = 100 N, F_{2} = 2000 N, A_{2} = 4 m^{2}.

\frac{100}{A_{1} } = \frac{2000}{4}

A_{1} = \frac{100*4}{2000}

    = \frac{400}{2000}

    = 0.2

A_{1} = 0.2 m^{2}

The area of the small piston is 0.2 m^{2}.

You might be interested in
At what time of day would you be most likely to find that the air over water is significantly warmer than the air over land near
Brut [27]

This would happen later at night or early in the morning.

The reason being land becomes warm and cold quicker than the water because of the heat capacity. So during the day water warms up because of sunlight but at night the land becomes a lot cooler as compared to the water which is still war. So the air over water is significantly warmer than the air over land.

4 0
3 years ago
Read 2 more answers
How much force is required to pull a spring 3.0 cm from
avanturin [10]

Answer:

I know that T= kx where T is the tension which equaka the force og gravity = mg = 1.37 * 10 = 13.7 x is the elongation of the spring so the length after dangling the object minus the original length.

I hope it helps

plz let me know if it is wrong or right.

4 0
3 years ago
I NEED HELP ASAP
34kurt
I think it’s gonna be b.
4 0
2 years ago
A point charge Q is held at a distance r from the center of a dipole that consists of two charges ±q separated by a distance s.
marishachu [46]

Answer:

a) the magnitude of the force is

F= Q(\frac{kqs}{r^3}) and where k = 1/4πε₀

F = Qqs/4πε₀r³

b)  the magnitude of the torque on the dipole

τ = Qqs/4πε₀r²

Explanation:

from coulomb's law

E = \frac{kq}{r^{2} }

where k = 1/4πε₀

the expression of the electric field due to dipole at a distance r is

E(r) = \frac{kp}{r^{3} } , where p = q × s

E(r) = \frac{kqs}{r^{3} } where r>>s

a) find the magnitude of force due to the dipole

F=QE

F= Q(\frac{kqs}{r^3})

where k = 1/4πε₀

F = Qqs/4πε₀r³

b) b) magnitude of the torque(τ) on the dipole is dependent on the perpendicular forces

τ = F sinθ × s

θ = 90°

note: sin90° = 1

τ = F × r

recall  F = Qqs/4πε₀r³

∴ τ = (Qqs/4πε₀r³) × r

τ = Qqs/4πε₀r²

8 0
3 years ago
A disk with radius R and uniform positive charge density s lies horizontally on a tabletop. A small plastic sphere with mass M a
Yanka [14]

Answer:

a. F = Qs/2ε₀[1 - z/√(z² + R²)] b.  h =  (1 - 2mgε₀/Qs)R/√[1 - (1 - 2mgε₀/Qs)²]

Explanation:

a. What is the magnitude of the net upward force on the sphere as a function of the height z above the disk?

The electric field due to a charged disk with surface charge density s and radius R at a distance z above the center of the disk is given by

E = s/2ε₀[1 - z/√(z² + R²)]

So, the net force on the small plastic sphere of mass M and charge Q is

F = QE

F = Qs/2ε₀[1 - z/√(z² + R²)]

b. At what height h does the sphere hover?

The sphere hovers at height z = h when the electric force equals the weight of the sphere.

So, F = mg

Qs/2ε₀[1 - z/√(z² + R²)] = mg

when z = h, we have

Qs/2ε₀[1 - h/√(h² + R²)] = mg

[1 - h/√(h² + R²)] = 2mgε₀/Qs

h/√(h² + R²) = 1 - 2mgε₀/Qs

squaring both sides, we have

[h/√(h² + R²)]² = (1 - 2mgε₀/Qs)²

h²/(h² + R²) = (1 - 2mgε₀/Qs)²

cross-multiplying, we have

h² = (1 - 2mgε₀/Qs)²(h² + R²)

expanding the bracket, we have

h² = (1 - 2mgε₀/Qs)²h² + (1 - 2mgε₀/Qs)²R²

collecting like terms, we have

h² - (1 - 2mgε₀/Qs)²h² = (1 - 2mgε₀/Qs)²R²

Factorizing, we have

[1 - (1 - 2mgε₀/Qs)²]h² = (1 - 2mgε₀/Qs)²R²

So, h² =  (1 - 2mgε₀/Qs)²R²/[1 - (1 - 2mgε₀/Qs)²]

taking square-root of both sides, we have

√h² =  √[(1 - 2mgε₀/Qs)²R²/[1 - (1 - 2mgε₀/Qs)²]]

h =  (1 - 2mgε₀/Qs)R/√[1 - (1 - 2mgε₀/Qs)²]

4 0
2 years ago
Other questions:
  • La masa de un objeto en la tierra es de 100 kg.
    13·1 answer
  • What happens to the kinetic energy of a snowball as it rolls across the lawn and gains mass.
    6·2 answers
  • What type of wave could measure 5 meters in length?
    12·1 answer
  • Which of the following is an example of deduction
    10·1 answer
  • A car traveling 90km/hr is 100 m behind a truck traveling 50km/hr. How long will it take the car to reach the truck?
    15·2 answers
  • A circuit has a source voltage of 50v and a current of 10a. what is the power in watts
    11·1 answer
  • Which statements about the moon’s phases are true? Check all that apply.
    12·2 answers
  • Use the information below for the next five questions:
    11·1 answer
  • M nbfgvfdifytdffxtrg ftdfgj
    15·2 answers
  • Why should we change worn out tyres. Topic》Frictional force​
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!