1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Otrada [13]
3 years ago
10

How long does it take to raise the temperature of the air in a good-sized living room (3.00m×5.00m×8.00m) by 10.0∘C? Note that t

he specific heat of air is 1006 J/(kg⋅∘C) and the density of air is 1.20kg/m3.
Express your answer numerically in minutes, to three significant figures.
Physics
1 answer:
QveST [7]3 years ago
3 0

Answer : The time required is, 16.1 minutes.

Explanation :

First we have to calculate the amount of heat required to increase the temperature is:

Q=mC\Delta T\\\\Q=\rho VC\Delta T

(m=\rho V)

where,

Q = amount of heat required = ?

m = mass

\rho = density of air = 1.20kg/m^3

V = volume of air

C = specific heat of air = 1006J/kg^oC

\Delta T = change in temperature = 10.0^oC

Now put all the given values in above formula, we get:

Q=\rho VC\Delta T

Q=(1.20kg/m^3)\times (3.00m\times 5.00m\times 8.00m)\times (1006J/kg^oC)\times (10.0^oC)

Q=1.449\times 10^6J

Now we have to calculate the time required.

Formula used :

t=\frac{Q}{P}

where,

t = time required = ?

Q = amount of heat required = 1.449\times 10^6J

P = power = 1500 W

Now put all the given values in above formula, we get:

t=\frac{1.449\times 10^6J}{1500W}

t=966s\times \frac{1min}{60s}=16.1min

Thus, the time required is, 16.1 minutes.

You might be interested in
John goes grocery shopping with his mother. His job is to push the cart. The cart is
lora16 [44]

Answer:

Beacause he has more grocceries and food heavy

Explanation:

7 0
3 years ago
Helppp pleaseeeeeeee. NO LINKS. HELP HELP HELP
Lera25 [3.4K]

Answer:

Choice A

Explanation:

The lower the point the higher the kinetic energy because Mechanical energy is conserved and the Gravitational Potential Energy gets lower when the height is lower

3 0
2 years ago
NaOH + FeCl3* Na Cl + Fe 10H)3<br> balanced
zvonat [6]
3NaOH + FeCl3 → 3NaCl + Fe(OH)3
8 0
3 years ago
A string that passes over a pulley has a 0.341 kg mass attached to one end and a 0.625 kg mass attached to the other end. The pu
dalvyx [7]

Answer:

The frictional torque is \tau  = 0.2505 \ N \cdot m

Explanation:

From the question we are told that

   The mass attached to one end the string is m_1 =  0.341 \ kg

   The mass attached to the other end of the string is  m_2 =  0.625 \ kg

    The radius of the disk is  r = 9.00 \ cm  = 0.09 \ m

At equilibrium the tension on the string due to the first mass is mathematically represented as

      T_1 =  m_1 *  g

substituting values

      T_1 =  0.341 * 9.8

      T_1 =  3.342 \ N

At equilibrium the tension on the string due to the  mass is mathematically represented as

      T_2 =  m_2 *  g

     T_2 = 0.625 * 9.8

      T_2 = 6.125 \ N

The  frictional torque that must be exerted is mathematically represented as

      \tau  =  (T_2 * r ) - (T_1 * r )

substituting values  

     \tau  =  ( 6.125 * 0.09 ) - (3.342  * 0.09 )

     \tau  = 0.2505 \ N \cdot m

5 0
3 years ago
The dragster has a mass of 1.3 Mg and a center of mass at G. A parachute is attached at C provides a horizontal braking force of
adell [148]

Answer:

The deceleration of the dragster upon releasing the parachute such that the wheels at B are on the verge of leaving the ground is  16.33 m/s²

Explanation:

The additional information to the question is embedded in the diagram attached below:

The height between the dragster and ground is considered to be 0.35 m since is not given ; thus in addition win 0.75 m between the dragster and the parachute; we have: (0.75 + 0.35) m = 1.1 m

Balancing the equilibrium about point A;

F(1.1) - mg (1.25) = ma_a (0.35)

1.8v^2(1.1) - 1200(9.8)(1.25) = 1200a(0.35)

1.8v^2(1.1) - 14700 = 420 a   ------- equation (1)

F_x = ma_x \\ \\ = 1.8v^2 = 1200 \ a             --------- equation (2)

Replacing equation 2 into equation 1 ; we have :

{1.1 * 1200 \ a} - 14700 = 420 a

1320 a - 14700 = 420 a

1320 a -  420 a =14700

900 a = 14700

a = 14700/900

a = 16.33 m/s²

The deceleration of the dragster upon releasing the parachute such that the wheels at B are on the verge of leaving the ground is  16.33 m/s²

5 0
2 years ago
Other questions:
  • You are camping with two friends, Joe and Karl. Since all three of you like your privacy, you don't pitch your tents close toget
    15·1 answer
  • Liam did an investigation to see how water temperature affects the amount of salt that will dissolve in the water. He filled 4 b
    6·2 answers
  • A 2.36 kg block resting on a frictionless surface is attached to an ideal spring with spring constant k = 260 Nm . A force is ap
    15·1 answer
  • a boy throw a ball upward from the top of a cliff 73m high.Calculate the time in which ball will fall on the ground and the velo
    6·1 answer
  • Suppose a ball has a potential energy of 5 J when you drop it. What would be its kinetic energy just as it hit the ground? (Igno
    7·1 answer
  • What is the process in which the work of scientists is evaluated by other researchers? a. Scientific critique c. scientific inqu
    7·2 answers
  • A horse shoe magnet is placed on a mass balance such that a uniform magnetic field of magnitude B runs between it from North to
    8·1 answer
  • An illustration of a ball sitting at the top of a hill of height labeled h Subscript 1 Baseline = 2 m. A the the bottom of the h
    8·2 answers
  • A 20 kg mass is moving at 10 m/s and collides with a stationary 5 kg mass, transferring all its momentum in the collision, what
    7·1 answer
  • Can someone please answer this, ill give you brainliest Would be very appreciated.
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!