Answer:
Explanation:
Mass of ice m = 500g = .5 kg
Heat required to raise the temperature of ice by 10 degree
= mass of ice x specific heat of ice x change in temperature
= .5 x 2093 x 10 J
10465 J
Heat required to melt the ice
= mass of ice x latent heat
0.5 x 334 x 10³ J
167000 J
Heat required to raise its temperature to 18 degree
= mass x specific heat of water x rise in temperature
= .5 x 4182 x 18
=37638 J
Total heat
=10465 +167000+ 37638
=215103 J
The extrapolated temperature is used to define the maximum temperature of the mixture relatively than the highest recorded temperature in which the conclusion will effect in a higher specific heat value. Heat is bound to escape from whatever apparatus is using, therefore it is needed to account for the loss of the heat that does not go into increasing the temperature of the mixture.
Answer:
(d) a net external force must be acting on the system
Explanation:
Momentum is given as the product of mass and velocity.
P = MV
According to Newton's second law of motion, " Force applied to a body (system) is directly proportional to the rate of change of momentum of the body (system) which takes place in the direction of the applied force (external force).
F ∝ΔMV
Therefore, If the total momentum of a system is changing, a net external force must be acting on the system.
(d) a net external force must be acting on the system
There is no factor on your list of choices that has any effect.
Answer:
v = 50.5 m/s
Explanation:
F = (m)(^v/^t)
115N = (0.04551kg)(v/(0.020s))
2,526.917161 m/s² = v/(0.020s)
v = 50.53834322 m/s
v = 50.5 m/s