This is a concept of momentum. In equation, momentum is the product of force and distance. When a ball is thrown, its force is constant all throughout unless disturbed by an external force. Therefore, force is the constant of proportionality that relates momentum with distance. When you block a ball from a given distance, you would feel the great force on your hand. In order to reduce the force, you have to follow the direction of the force in order to minimize the impact. By doing this, you gradually decrease the momentum of the ball.
Answer:
45.88297 m
Violet
Explanation:
x = Gap between holes = 5.9 mm
= Wavelength = 527 nm
D = Diameter of eye = 5 mm
L= Distance of observer from holes
From Rayleigh criteria we have the relation

A person could be 45.88297 m from the tile and still resolve the holes
Resolving them better means increasing the distance between the observer and the holes. It can be seen here that the distance is inversely proportional to the wavelength. Violet has a lower wavelength than red so, violet light would resolve the holes better.
Answer:
No they are totally different...
Velocity is displacement/time. while vector is both magnitude and direction.....
Velocity is a vector quantity because it has both magnitude and direction
Answer: a) The acceletarion is directed to the center on the turntable. b) 5 cm; ac= 0.59 m/s^2; 10 cm, ac=1.20 m/s^2; 14 cm, ac=1.66 m/s^2
Explanation: In order to explain this problem we have to consider teh expression of the centripetal accelartion for a circular movement, which is given by:
ac=ω^2*r where ω and r are the angular speed and teh radios of the circular movement.
w=2*π*f
We know that the turntable is set to 33 1/3 rev/m so
the frequency 33.33/60=0.55 Hz
then w=2*π*0.55=3.45 rad/s
Finally the centripetal acceleration at differents radii results equal:
r= 0.05 m ac=3.45^2*0.05=0.50 m/s^2
r=0.1 ac=3.45^2*0.1=1.20 m/s^2
r=0.14 ac=3.45^2*0.14=1.66 m/s^2
It depends where you are.
-- If you weigh 120 pounds on the Moon,
then your mass is 329.1 kilograms.
-- If you weigh 120 pounds on Mars,
then your mass is 143.8 kilograms.
-- If you weigh 120 pounds on the Earth,
then your mass is 54.4 kilograms.