Mac and Keena are experimenting with pulses on a rope. Mac vibrates one end up and down while Keena holds the other end. This creates a pulse which they observe moving from end to end. How does the position of a point on the rope before the start of the pulse compare to its position after the pulse passes? Explain your reasoning.
Explanation:
The position vector r:

The velocity vector v:

The acceleration vector a:



Answer:
= 1.75 × 10⁻⁴ m/s
Explanation:
Given:
Density of copper, ρ = 8.93 g/cm³
mass, M = 63.5 g/mol
Radius of wire = 0.625 mm
Current, I = 3A
Area of the wire,
=
Now,
The current density, J is given as
= 2444619.925 A/mm²
now, the electron density, 
where,
=Avogadro's Number

Now,
the drift velocity, 

where,
e = charge on electron = 1.6 × 10⁻¹⁹ C
thus,
= 1.75 × 10⁻⁴ m/s
Given the time, the final velocity and the acceleration, we can calculate the initial velocity using the kinematic equation A:

A skateboarder flies horizontally off a cement planter. After a time of 3 seconds (Δt), he lands with a final velocity (v) of −4.5 m/s. Assuming the acceleration is -9.8 m/s² (a), we can calculate the initial velocity of the skateboarder (v₀) using the kinematic equation A.

Given the time, the final velocity and the acceleration, we can calculate the initial velocity using the kinematic equation A:

Learn more: brainly.com/question/4434106