Answer:
c. is more than that of the fluid.
Explanation:
This problem is based on the conservation of energy and the concept of thermal equilibrium

m= mass
s= specific heat
\DeltaT=change in temperature
let s1= specific heat of solid and s2= specific heat of liquid
then
Heat lost by solid= 
Heat gained by fluid=
Now heat gained = heat lost
therefore,
1000 S_2=800 S_1
S_1=1.25 S_2
so the specific heat of solid is more than that of the fluid.
Answer:
True
Explanation:
the horse pull on the wagon but friction and the wight + gravity make the wagon pull on the horse ( newton's 2ed law)
Answer:
time required is 6.72 years
Explanation:
Given data
mass m = 3.20 ✕ 10^7 kg
height h = 2.00 km = 2 × 10^3 m
power p = 2.96 kW =2.96 × 10^3 J/s
to find out
time period
solution
we know work is mass × gravity force × height
and power is work / time
so we say that power = mass gravity force × height / time
now put all value and find time period
power = mass × gravity force × height / time
2.96 × 10^3 = 3.20 ✕ 10^7 × 9.81× 2 × 10^3 / time
time = 62.784 × 10^10 / 2.96 × 10^3
time = 21.21081081 × 10^7 sec
time = 58.91891892 × 10^3 hours
time = 6.72 years
so time required is 6.72 years
A conducting material conducts or allows electricity to flow, while an insulator does not allow electricity to flow. For example think of a water pipe, if the pipe has a hole water can flow, on the other hand if it is just a solid rod, no water can flow through. I hope this helps.