Answer:
the image is behind the mirror
virtual
erect(not inverted)
larger than the object
<em>Hello there, and thank you for asking your question here on brainly.
<u>Answer: Koala bears are considered herbivores, or as in the scientific name, arboreal herbivorous marsupial, marsupial because it also carries it's babies around in a pouch. Koala bears are also native to Australia, which eucalyptus leaves are also native to.
</u>
Hope this helped you! ♥</em>
Based on the Newton's second law of motion, the value of the net force acting on the object is equal to the product of the mass and the acceleration due to gravity. If we let a be the acceleration due to gravity, the equation that would allow us to calculate it's value is,
W = m x a
where W is weight, m is mass, and a is acceleration. Substituting the known values,
40 kg m/s² = (10 kg) x a
Calculating for the value of a from the equation will give us an answer equal to 4.
ANSWER: 4 m/s².
Answer:
Explanation:
Sam mass=75kg
Height is 50m
20° frictionless slope
Horizontal force on Sam is 200N
According to the work energy theorem, the net work done on Sam will be equal to his change in kinetic energy.
Therefore
Wg - Ww =∆K.E
Note initial the body was at rest at top of the slope.
Then, ∆K.E is K.E(final) - K.E(initial)
K.E Is given as ½mv²
Since initial velocity is zero then, K.E(initial ) is zero
Therefore, ∆K.E=½mVf²
Wg is work done by gravity and it is given by using P.E formulas
Wg=mgh
Wg=75×9.8×50
Wg=36750J
Ww is work done by wind and it's is given by using formulae for work
Work=force × distance
Ww=horizontal force × horizontal distance
Using Trig.
TanX=opposite/adjacent
Tan20=h/x
x=h/tan20
x=50/tan20
x=137.37m
Then,
Ww=F×x
Ww=200×137.37
We=27474J
Now applying the formula
Wg - Ww =∆K.E
36750 - 27474 =½×75×Vf²
9276=37.5Vf²
Vf²=9275/37.5
Vf²= 247.36
Vf=√247.36
Vf=15.73m/s
D is s s s s s ss s s s s