Answer:
Yes
Explanation: Had a question like this and I said yes and got it right
Answer:
Kc = 1.09x10⁻⁴
Explanation:
<em>HF = 1.62g</em>
<em>H₂O = 516g</em>
<em>F⁻ = 0.163g</em>
<em>H₃O⁺ = 0.110g</em>
<em />
To solve this question we need to find the moles of each reactant in order to solve the molar concentration of each reactan and replacing in the Kc expression. For the reaction, the Kc is:
Kc = [H₃O⁺] [F⁻] / [HF]
<em>Because Kc is defined as the ratio between concentrations of products over reactants powered to its reaction coefficient. Pure liquids as water are not taken into account in Kc expression:</em>
<em />
[H₃O⁺] = 0.110g * (1mol /19.01g) = 0.00579moles / 5.6L = 1.03x10⁻³M
[F⁻] = 0.163g * (1mol /19.0g) = 0.00858moles / 5.6L = 1.53x10⁻³M
[HF] = 1.62g * (1mol /20g) = 0.081moles / 5.6L = 0.0145M
Kc = [1.03x10⁻³M] [1.53x10⁻³M] / [0.0145M]
<h3>Kc = 1.09x10⁻⁴</h3>
2H2(g) + O2(g) → 2H2O(1) 0 260 g 0.2068 0.180 g 2008
When 45.0 g of CH4 reacts with excess O2, the actual yield of CO2 is 118 g. What is the percent yield? CHA(g) + 2O2(g) - CO2(g) + 2H2O(g) 73.6% 67.9% 95.2% 86.4%
For the reaction: 2503(g) + 790 kcal - 25(s) + 3O2(g), how many kcal are needed to form 1.5 moles O2(g)? 790 kcal 395 kcal 2370 kcal 411 kcal
When 3 moles of Ny are mixed with 5 moles of H2 the limiting reactant is N2(g) + 3H2(g) - 2NH3(g) H2 NH3 ОООО H20 O N₂
Answer:
The answer to your question is: 24 grams of D
Explanation:
To answer this question we need to remember the Lavoisier law of conservation of mass, which says that in a chemical reaction matter is neither created nor destroyed.
This means that the amount of matter stays the same.
Then, the reaction is
A + B ⇒ C + D
26 g 12 g 14 g x
mass
of reactants 38 g ? mass of products, but it must be
equal to the mass of products
Then 14g + x = 38
x = 38 - 14
x = 24 g of D
46 is the answer. because if you add 26 and 20 that is the mass