In order to solve this, we need to know the standard cell potentials of the half reaction from the given overall reaction.
The half reactions with their standard cell potentials are:
<span>2ClO−3(aq) + 12H+(aq) + 10e- = Cl2(g) + 6H2O(l)
</span><span>E = +1.47
</span>
<span>Br(l) + 2e- = 2Br-
</span><span>E = +1.065
</span>
We solve for the standard emf by subtracting the standard emf of the oxidation from the reducation, so:
1.47 - 1.065 = 0.405 V
A solution of KNO3 consists of ions of potassium and nitrate. The ionic equation is expressed as:
KNO3 = K+ + NO3-
There is 1 is to 1 ratio between the substances. So, the molarity of NO3- in the solution is calculated as follows:
0.160 mol / L KNO3 ( 1 mol NO3- / 1 mol KNO3 ) = 0.160 M NO3-
Answer:
The answer is B.
Explanation:
Trust me i took the test already its b.
Answer:
If a saturated hot solution is allowed to cool, the solute is no longer soluble in the solvent and forms crystals of pure compound. Impurities are excluded from the growing crystals and the pure solid crystals can be separated from the dissolved impurities by filtration.