It seems more and more there are fewer conservation organizations who speak for the forest, and more that speak for the timber industry. Witness several recent commentaries in Oregon papers that are by no means unique. I’ve seen similar themes from other conservation groups across the West in recent years.
Many conservation groups have uncritically adopted views that support more logging of our public lands based upon increasingly disputed ideas about forest health and fire ecology, as well as the age-old bias against natural processes like wildfire and beetles.
For instance, an article in the Portland Oregonian quotes Oregon Wild’s executive director Sean Stevens bemoaning the closure of a timber mill in John Day Oregon. Stevens said: “Loss of the 29-year-old Malheur Lumber Co. mill would be ‘a sad turn of events’” Surprisingly, Oregon Wild is readily supporting federal subsidies to promote more logging on the Malheur National Forest to sustain the mill.
Answer:
The answer is D because NH4+and OH- it will be
N-1. N-1,
H-5
O-1 H-5
O-1
Answer:
Option e.
Explanation:
Molarity is the concentration that indicates moles of solute in 1 L of solution.
We have another concentration, percent by mass.
Percent by mass indicates mass of solute in 100 g of solution.
Our solute is HNO₃, our solvent is water.
17.5 g of nitric acid is the mass of solute. We can convert them to moles:
17.5 g . 1mol / 63g = 0.278 moles
We do not have volume of solution. We assume the mass is 100 g because the percent by mass but we need density to state the volume.
Density = Mass / Volume
Mass / Density = Volume
Once we have the volume, we need to be sure the units is in L, to determine molarity
M = mol /L
Answer:
see explanation below
Explanation:
Question is incomplete, so in picture 1, you have a sample of this question with the missing data.
Now, in general terms, the absorbance of a substance can be calculated using the beer's law which is the following:
A = εlc
Where:
ε: molar absortivity
l: distance of the light in solution
c: concentration of solution
However, in this case, we have a plot line and a equation for this plot, so all we have to do is replace the given data into the equation and solve for x, which is the concentration.
the equation according to the plot is:
A = 15200c - 0.018
So solving for C for an absorbance of 0.25 is:
0.25 = 15200c - 0.018
0.25 + 0.018 = 15200c
0.268 = 15200c
c = 0.268/15200
c = 1.76x10⁻⁵ M