O.N. of Na = +1
O.N. of O = -2
Let, O.N. of Tin = x
1*2 + x + -2*2 = 0
2+x-4 = 0
x-2 = 0
x = 2
SO OPTION C IS YOUR ANSWER......
Answer:
Below:
Explanation:
To calculate an energy change for a reaction: add together the bond energies for all the bonds in the reactants - this is the 'energy in' add together the bond energies for all the bonds in the products - this is the 'energy out.
Hope it helps....
It's Muska
Negative because it'll have to gain an electron
Good laboratory technique demands clean glassware because the most carefully executed piece of work may give an erroneous result if dirty glassware is used. In all instances, glassware must be physically and chemically clean and in many cases, it must be bacteriologic-ally clean or sterile.
Answer:
6 half-lives are required for the concentration of reactant to decrease to 1.56% of its original value.
Explanation:
Using integrated rate law for first order kinetics as:
Where,
is the concentration at time t
is the initial concentration
Given:
Concentration is decreased to 1.56 % which means that 0.0156 of
is decomposed. So,
= 0.0156
Thus,
kt = 4.1604
The expression for the half life is:-
Half life = 15.0 hours
Where, k is rate constant
So,

<u>6 half-lives are required for the concentration of reactant to decrease to 1.56% of its original value.</u>